簡易檢索 / 詳目顯示

研究生: 楊宸宇
Yang, Chen-yu
論文名稱: 奈米級α相氧化鋁粉末燒結之研究
A Study of the Sintering Using Nanometer Sized α-Alumina Powders
指導教授: 溫紹炳
Wen, Shaw-Bing
申永輝
Shen, Yun-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 81
中文關鍵詞: 氧化鋁氫氧化鋁膠燒結
外文關鍵詞: alumina, boehmite, sintering
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以油酸分散氫氧化鋁膠製造之奈米氧化鋁粉末作為起使原料,分別添加0wt%、15wt%及30wt%的氫氧化鋁膠混合後,過100目篩造粒之,再以單軸加壓至200MPa,得到的生胚經過1250℃至1450℃間之燒結溫度持溫2小時燒結,得到不同之氧化鋁燒結體,再對燒結體進行視密度、體積收縮率、顯微結構與結晶粒徑分布,以獲得燒結體的性質。
    由油酸分散氫氧化鋁膠製造之奈米氧化鋁粉末,在經過1200℃持溫20分鐘後,得到奈米級純α相氧化鋁粉末,其X光繞射測定晶徑為40nm,其比表面積測定結果為40.4m2/g,換算粒徑約為37nm,在SEM顯微照片上以費氏直徑量测平均為55nm。而實驗比較之外α-氧化鋁粉末,其X光繞射測定晶徑為60nm,其比表面積測定結果為35.7m2/g,換算粒徑約為42nm,在SEM顯微照片上以費氏直徑量测平均為110nm。
    在胚體燒結過程中,添加氫氧化鋁膠之胚體均有較高的生胚密度提昇,而以油酸分散製造之α氧化鋁粉末粉體型態均勻,凝聚及蠕蟲狀顆粒較少的粉體中,添加氫氧化鋁膠體,對生坯密度的提昇及其燒結體的緻密化表現均有較佳的效果。反之,在凝聚較多及帶有蠕蟲狀結構的外購α氧化鋁粉末中,氫氧化鋁膠的添加,對其燒結緻密化的助益效果並不明顯。研究中發現未添加膠體之α-氧化鋁胚體,雖起始生坯密度較低,可在1450℃持溫2小時得到相對密度96%,中位結晶粒徑約1µm的燒結體。

    This research was study the sinterting behavior of two kinds nanometer-sized α-alumina powders.One is the nanometric sized α-alumina powders manufactured from hydroxide gel precursor mixing with oleic.Another kinds of nanometer-sized α-alumina powders was bought from ALFA company and was named n44652(Alfa) powders.
    Green body was prepared by mixing aluminum hydroxide gel into α-alumina and pelleted with 100 mesh screen.The drying green body were formed with 200 MPa automatic uniaxial hydraulic press. These green bodies were sintered at 1250℃ to 1450℃for 2 hours duration and furnace-cooling to room temperature.The sintered ceramic bodies were identified by relative apparent density,volume shrinkage rate ,micro-structure obsvervation and grain size distribution measurement.
    The results indicated the α-alumina powders manufactured from aluminum hydroxide gel mixed with oleic acid and heated until 1200℃ for 20 mins,the average size of this α-alumina powders was 40nm from XRD peak broaden measurement.The BET surface srea was 40.4m2/g,and the average grain size from SEM photo was 55nm.The ALFA company n44652(Alfa) powder was indicated that the average size of this α-alumina powders of individual crystal diameters was 60nm,the BET surface area was 35.7m2/g,and the average grain size for SEM photo was 110nm.
    In the process of sintering,we found that all green bodies adding aluminum hydroxide gel had more dance green body . Less of the agglomerates in our alumina powders had the more dance sintered bodies than that of ALFA company powders.The best sample sintering of α-alumina green body,the relative density sintered at 1450℃ for 2hours were calculated 96% and the grain size of that was indentified 1μm.

    圖目錄 IX 表目錄 XI 第一章 緒論 1 1-1前言 1 1-2研究目的 3 1.3前人研究 4 1.3.1奈米粉體的製備 4 1.3.2氫氧化鋁膠體的應用 5 第二章 理論基礎與文獻回顧 8 2.1氧化鋁的性質與晶格構造 8 2.1.1氧化鋁背景簡介 8 2.2.1 膠體的吸附【22】 13 2.2.2 膠體的分散 14 2.2.3 混合之乳膠理論【25,26】 17 2.3 固相燒結理論 21 2.3.1傳統燒結過程: 21 2.3.2 奈米陶瓷粉末燒結緻密化模型 26 2.4粉末的燒結性 27 2.4.2成形體的性質 28 2.4.3粉體的結構 29 2.4.3.1凝聚體對燒結的影響 29 2.4.3.2孔隙對燒結的影響 31 第三章 實驗方法與步驟 34 3.1實驗材料與儀器 36 3.1.1實驗材料 36 3.1.2 實驗儀器 38 3.2性質分析 40 3.3實驗流程與步驟 44 3.3.3氧化鋁生坯及燒結體的製備 46 第四章 結果與討論 48 4.1氫氧化鋁膠體分析結果 48 4.1.1膠體XRD分析 48 4.1.2膠體DTA&TG分析 48 4.2 奈米級α相氧化鋁粉末之結果 51 4.2.1奈米級α相氧化鋁粉末結晶相分析 51 4.2.2奈米級α相氧化鋁粉末微結構與粒徑分析 53 4.3添加不同比例氫氧化鋁膠體對於生胚的影響 56 4.3.1生胚體密度 56 4.3.2顯微結構 56 4.4添加不同比例氫氧化膠體對於燒結體的影響 59 4.4.1燒結體之相對視密度 59 4.4.2燒結體之收縮率 61 4.4.3燒結體的顯微結構 63 4.5燒結體的粒徑分布 66 4.6綜合討論與比較 69 4.6.1 添加膠體比例的影響分析 69 4.6.2粉體型態與生坯結構的影響分析 70 4.6.3 前人研究比較分析 71 第五章 結論 73 參考文獻 75

    1. 陳家榮 (2003),“Advanced Ceramic Powders and Nano Ceramic Powders”,第一屆海峽兩岸粉體製備科學與技術研討會。
    2. 謝長利 (1997),“次微米氧化鋁之膠粒製程、乾燥行為、相變化及破壞強度之研究”,國立台灣大學材料科學與工程研究所,碩士論文。
    3. 盧素珍 (1994) “超細微氧化鋁膠體製程及破壞強度之研究”,國立台灣大學材料科學與工程研究所,碩士論文。
    4. H.C.Kao,W.J.Wei and C.Y.Huang,“Two-Stage Densification of Ultrafine Transition Alumina Seeded with α-Phase Particulates”,Journal of Ceramic Processing Research,4[1],34-41(2003)。
    5.黃子謙 (2005),“以油酸分散氫氧化鋁膠製造之奈米級α相氧化鋁粉末燒結研究”,國立成功大學資源工程研究所,碩士論文。
    6. Jun Ding,T.Tsuziki and P.G.McCormick (1996) “Ultrafine Alumina Particles Prepared by Mechanochemical/Thermal Processing”,Journal of Americal Ceramic Sociense ,79[11] ,PP.2951~2958。

    7.Sharma,P.K.,M.H.Jilavi,D.Burgard,R.Nass and H.Schmidt (1998),“Hydrothermal Synthesis of Nanosize α-Al2O3 from Seeded Aluminum Hydroxide”J.Am.Ceram.Soc.81[10] pp.2732~2734。
    8.F.S.Yen and H.L.Wen (2000), “Growth Characteristics of Boehmite-derived Ultrafine Theta and Alpha-alumina Particles during Phase Transformation”,Journal of Crystal Growth ,208,pp.696~708
    9.Y.Q.Wu , T.F.Zhang ,X.X.Huang and J.K.Guo (2001),“Preparation of Platelike Nano Alpha Alumina Particles”,Ceramic International 27,pp.5664~5672。
    10.林志朋 (2002),“以油酸分散配合氣氛加熱製造奈米α相氧化鋁粉末之研究”,國立成功大學資源工程學系,博士論文。
    11.C.P.Lin,S.B.Wen and T.T.Lee (2002),“Preparation of Nanometer Sized α-Alumina Powders by Calcining an Emulsion of Boehmite and Oleic Acid”, J.Am.Ceram.Soc. Vol.85,No.1。
    12. C.P.Lin and S.B.Wen (2002),“Variation of Boehmite and Oleic Acid Emulsion in the Calcining Process of Alumina Powders”,J.Am.Ceram.Soc. Vol.85,No.6。
    13謝沐辰 (2004),“以油酸分散氫氧化鋁膠製造α相氧化鋁粉末程序之研究”,國立成功大學資源工程學系,碩士論文。
    14. B. Kindl, D.J. Carlsson,,Y. Deslandes,A.J. Hoddenbagh (1991),“Preparation of α-alumina ceramics: the use of boehmite sol as dispersion agent”Ceram. Int. 17 ,pp. 347~350。
    15. Sunilkumar, C., Hareesh, U. S., Damodaran, A. D. and
    Warrier, K. G. K.(1997),“Monohydroxy aluminium oxide (Boeh-
    mite, AlOOH) as a reactive binder for extrusion of alumina
    ceramics”,J. Eur. Ceram. Soc.17,pp.1167~1172。
    16. S. Kwon, G.L. Messing (1998) ,“Constrained densification in boehmite–alumina mixtures for the fabrication of porous alumina ceramics”, J. Mater. Sci. 33 ,pp. 913~921.
    17. K. Prabhakaran, S. Ananthakumar and C. Pavithran (1999),“Gel Casting of Alumina Using Boehmite as a Binder”,Journal of European Ceramic Society 19 ,pp. 2875-2881.
    18. A.R. Boccaccini, C. Kaya (2002),“Alumina ceramics based on seeded boehmite and electrophoretic deposition”,Ceramics International 28,pp.893~897.

    19. S. Ananthakumar, P. Manohar, K.G.K. Warrier (2004),“Effect of boehmite and organic binders on extrusion of alumina”,Ceramics International 30,pp.837~842.
    20. 龔家賦 (2005),“以水鋁石膠體為黏結劑之奈米氧化鋁擠出泥料的製備及特性研究”,遠東技術學院機械研究所,碩士論文。
    21. 汪建民主編(1999),“陶瓷技術手冊(上)、(下)”,中華民國粉末冶金協會,ch2,3,5,19,20。
    22. 趙承琛(1985),“界面科學基礎”,復文書局。
    23.Warren L. J., (1984), “ Australasian Institute of Mining and Metallurgy”, Principles of Mineral Flotation。
    24. Robort J. P. and L. Bergstrom, (1994),“Surface and Colloid Chemistry in Advanced Ceramics Processing ”,Copyright by MARCEL DEKKER。
    25. Shanefield D. J.(1995),“ Organic Additives and Ceramic Processing”,Kluwer Academic Publishers。
    26. Yoshikiyo M.(1992),“Micelles Theoretical and Applied Aspects”,ch1~4, Plenum Press New York。
    27.張有義、郭蘭生編譯 (1999),“膠體及界面化學入門”,高立圖書有限公司。
    28. 曹恒光 連大成 (2001),“淺談微乳液”,物理雙月刊23卷四期,
    pp.488~493。
    29. R.L.Coble (1961),“Sintering Crystalline Solids:II,Experimental Test of Diffusion Modles in Powder Compacts”,J. Appl. Phys.,32,pp.793~799。
    30. M. F. Ashby (1974)“A First Report on Sintering Diagrams” Acta Metal.,22,pp.275~289。
    31. P.L.Chen and I.W.Chen (1997),“Sinterimg of Fine Oxide Powder:II,Sintering Mechanisms”,J. Am. Ceram. Soc.,80[3],pp.637~645。
    32. S. Taruta, K. Kitajima, N. Takusagawa, K. Okada and N. Otsuka (1992),“Influence of Coarse Particle Size on Packing and Sintering Behavior of Bimodal Size Distributed Alumina Powder Mixtures”,J. Jp. Ceram. Soc.,101 [5],pp.583~588。
    33. J. P. Smith and G. L. Messing (1984),“Sintering of Bimodally Distributed Alumina Powders”, J. Am. Ceram. Soc., 67[4],pp.238~242。

    34. Paul Bowen and Claude Carry (2002),“From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides”, Powder Technology,Vol128, Issues 2-3,pp. 248~255。
    35. T. Kimura, Y. Matsuda, M. Oda and T. Yamaguchi (1987), “Effects of Agglomerates on the Sintering of Alpha-Al2O3”, Ceram. International,13,pp.27~34。
    36. G. Li and X. Sun (2 000),“Synthesis and Sintering Behavior of a Nanocrystallinea-Alumina Powder”, Acta Mater,48,pp.3103~3112。
    37. J.W. Halloran (1984),“Agglormerates and Agglomeration in Ceramic Processing,in Ultrastructure Processing of Ceramics, Glass, and Composites ”, Eds. L. L. Henchand D. R. Ulrich, Wiley,New York。
    38. H.Rumpf and H.Schubert (1978),“ Adhesion Forces in Agglomeration Processes, in Ceramic Processing before Firing ”,Eds. G. Y. Onoda and L. L. Hench, Wiley,New York。

    39.R. Pampuch and Haberko (1983),“Agglomerate in Ceramic Micropowders and their Behavior on Cold Pressing and Sintering”, in Material Science Monograph,16,Ceramic Powder, Ed. P. Vincernzini。
    40. W. D. Kingery and B. Francois (1967),“Sintering of Crystalline Oxides, I. Interactions between Grain Boundaries and Pores”, p. 471 in Sintering and Related Phenomena. Eds. G. C. Kuczynske, N .A. Hooton, and G. F. Gibbon, Gordon Breach, New York。
    41. F. F. Lange(1984),“Sinterability of Agglomerated Powders”, J. Am. Ceram. Soc., 67 [2],pp.83-88。
    42. J. Zheng and J. S. Reed (1989),“Effect of Particle Packing Characteristics on Solid-State Sintering”, J. Am. Ceram. Soc., 72[5],pp.810~817。

    下載圖示 校內:2008-07-10公開
    校外:2010-07-10公開
    QR CODE