簡易檢索 / 詳目顯示

研究生: 廖怡君
Liao, Yi-Jyun
論文名稱: eco60-63 operon 降低大腸桿菌K1 RS218在人類血清中存活的機制
The mechanism of reduced human serum survival of Escherichia coli K1 RS218 by the eco60-63 operon
指導教授: 鄧景浩
Teng, Ching-Hao
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 66
中文關鍵詞: K1大腸桿菌eco60-63基因組補體活化
外文關鍵詞: Escherichia coli K1, the eco60-63 operon, complement activation
相關次數: 點閱:102下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • K1大腸桿菌是新生兒腦膜炎感染中常見的致病菌,而菌血症是發展這類腦膜炎一個重要的進程,因此鑑定K1大腸桿菌毒性因子在血液中的角色將有助於我們了解細菌的致病機轉,以發展策略對抗疾病。RS218為K1大腸桿菌,eco60-63基因組被發現位於此菌一個幫助發展腦膜炎的質體pRS218上,此基因組已知在早期尿道感染扮演重要角色,然而根據我們先前實驗結果,細菌表達此基因組會降低血清中的存活率,因此在本篇研究,我的目的是要探討致病性大腸桿菌表達此基因組 (eco60-63+ RS218) 比不表達株 (eco60-63- RS218) 受到較嚴重血清擊殺的原因。
    在血清中,eco60-63+ RS218會黏附比eco60-63- RS218較高量的C3b和MAC,因此可推測eco60-63+ RS218比eco60-63- RS218遭受較高量血清補體攻擊。抑制血清中古典和替代路徑後,會降低eco60-63+ RS218和eco60-63- RS218的血清存活差距,且eco60-63+ RS218比eco60-63- RS218表面有較多C1q、IgG和properdin的黏附,由結果可推測細菌表達eco60-63基因組會活化較高量補體反應中抗體依賴型古典及替代路徑。此外我們發現表達eco60-63 operon會降低RS218 K1的莢膜表達以及增加對membrane attack complex (MAC) 的敏感性,此可能是造成表達株有較低血清存活率的原因。表達eco60會降低RS218的血清存活能力,但表達基因組中的其他基因不會降低細菌的血清存活率,由此可知eco60在eco60-63+ RS218和eco60-63- RS218有差別的血清擊殺上有參與角色。
    由以上結果我們得知eco60-63基因組會妨礙細菌在serum中的存活,但RS218的毒性質體仍保留此operon,因此未來仍需探討是否eco60-63基因組對大腸桿菌在腦膜炎其他致病過程上有所貢獻。在本篇研究中,經由了解eco60-63基因組在K1大腸桿菌serum中存活的角色,將使我們對K1大腸桿菌的感染有進一步的了解,並有助於發展策略對抗此類感染。

    Escherichia coli (E. coli) K1 is one of the most common pathogens causing neonatal meningitis. Since induction of bacteremia is a key step for the development of E. coli meningitis, characterizing the roles of the bacterial virulence factors when the pathogen is in the bloodstream would facilitate our understanding of the pathogenesis of this disease and contribute to the development of strategies against this disease. The eco60-63 operon encoded by pRS218, a virulence plasmid of the E. coli K1 strain RS218 known to be involved in the pathogenesis of E. coli meningitis. This operon has been shown to play an important role in the early stage of urinary tract infection (UTI) caused by E. coli. However, our previous study showed that the expression of eco60-63 decreased the ability of RS218 to survive in the bloodstream and serum. Thus, in the present study I further investigated why the pathogenic E. coli strain expressing this operon (eco60-63+ RS218) reduced resistance to serum killing than the strain without this operon (eco60-63- RS218).
    In normal human serum (NHS), eco60-63+ RS218 exhibited higher levels of C3b and membrane attack complex (MAC) deposition on the surface than eco60-63- RS218, suggesting that eco60-63+ RS218 encounters a higher level of complement-mediated attack in NHS than eco60-63- RS218. Blocking the activation of the classical or alternative complement pathways in NHS significantly decreased the difference of these two strains’ serum survival. Also, eco60-63+ RS218 exhibited higher levels of C1q, IgG and properdin deposition in NHS than eco60-63- RS218. These findings suggested that eco60-63+ RS218 triggers stronger activation of the antibody-dependent classical and alternative complement pathways than eco60-63- RS218. Moreover, expressing the eco60-63 operon may decrease RS218’s K1 capsule expression and increase this bacterium’s sensitivity to attack of membrane attack complex (MAC). The phenotypes induced by this operon may also contribute to the decreased serum survival caused by eco60-63 expression. In addition, expressing the eco60 gene alone decreased RS218’s serum survival ability, while the expression of the other individual genes in the operon did not decrease the bacterium’s serum survival. This suggested that eco60 plays a role in the differential serum killing of eco60-63+ RS218 and eco60-63- RS218.
    Although the eco60-63 operon hindered NMEC RS218 to survive in the serum, RS218’s virulence plasmid still retains the operon. A further study is required to determine whether the eco60-63 operon contributes to other pathogenesis steps of E. coli meningitis. The knowledge obtained from this study facilitates our understanding of E. coli pathogenesis, which may contribute to the development of novel strategies against E. coli-caused infections in the future.

    Abstract I 中文摘要 IV 誌謝 VI Contents VII Lists of tables X Lists of figures XI Abbreviations XII Introduction 1 1.1 Introduction of E. coli 1 1.2 Neonatal bacterial meningitis 2 1.3 Pathogenesis of E. coli meningitis 2 1.4 Virulence plasmid and NMEC pathogenesis 3 1.4.1 Brief introduction of virulence plasmid 3 1.4.2 Relationship of NMEC plasmid and bacterial pathogenesis 4 1.5 Introduction of the eco60-63 operon on pRS218 5 1.6 The complement pathway 6 1.6.1 Activation of complement system 6 1.6.2 Regulation of complement activation 8 1.6.3 Virulence factors of NMEC K1 in evasion of the complement system 9 Specific aim 11 Materials and methods 12 2.1 Bacterial strains and culture condition 12 2.2 Normal human serum, heat-inactivated human serum and modified human serum 12 2.3 Serum survival 13 2.4 Detection of protein deposition by flow cytometry 13 2.4.1 Deposition of IgG, properdin, C1q and MAC from human serum 13 2.4.2 Deposition of C3b from human serum 14 2.4.3 The protein binding assays with the purified C1q 14 2.5 Detection of ribonuclease (RNase) leakage 15 2.6 Western blot analysis 15 2.7 LPS extraction and silver stain 15 2.8 Analysis of capsular gene expression 16 2.8.1 RNA extraction and DNA digestion 16 2.8.2 Reverse transcription polymerase chain reaction (PCR) 18 2.8.3 Real-time PCR 18 2.9 Statistical analysis 18 Results 19 3.1 The expression of the eco60-63 operon facilitates bacterium serum killing mediated by the heat-labile complement system 19 3.2 The classical and the alternative pathways were involved in differential serum killing of eco60-63+ RS218 and eco60-63- RS218 20 3.3 The expression of eco60-63 operon in E. coli K1 triggered higher activation levels of the antibody-dependent classical and alternative complement pathways 20 3.4 The expression of the eco60-63 operon increased the bacterial sensitivity to MAC 21 3.5 The expression of the eco60-63 operon increased E. coli membrane permeability and decreased K1 capsule expression 22 3.6 The eco60 of bacteria plays a role in the differential serum killing on eco60-63+ RS218 and eco60-63- RS218 23 Discussion 25 Figures& Tables 30 References 42 Appendixes 51

    1. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol.2004;2:123-140.
    2. Bentley R, Meganathan R. Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev.1982;46:241-280.
    3. Hudault S, Guignot J, Servin AL. Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection. Gut.2001;49: 47–55.
    4. Orskov I, Orskov F, Jann B, Jann K. Serology, chemistry, and genetics of O and K antigens of Escherichia coli. Bacteriol Rev.1977;41:667-710.
    5. Harvey D, Holt DE, Bedford H. Bacterial meningitis in the newborn: a prospective study of mortality and morbidity. Semin Perinatol 1999;23:218-225.
    6. Furyk JS, Swann O, Molyneux E. Systematic review: neonatal meningitis in the developing world. Trop Med Int Health.2011;16:672-679.
    7. Molyneux EM, et al. Dexamethasone treatment in childhood bacterial meningitis in Malawi: a randomised controlled trial. The Lancet.2002;360:211-218.
    8. Shah SS, Ohlsson A, Shah VS. Intraventricular antibiotics for bacterial meningitis in neonates. Cochrane Database Syst Rev 2012;7:1-18.
    9. Stevens JP, Eames M, Kent A, Halket S, Holt D, Harvey D. Long term outcome of neonatal meningitis. Arch Dis Child Fetal Neonatal Ed 2003;88:179-184.
    10. Kim KS. Current concepts on the pathogenesis of Escherichia coli meningitis: implications for therapy and prevention. Curr Opin Infect Dis.2012;25:273-278.
    11. Kim KS. Acute bacterial meningitis in infants and children. Lancet Infect Dis 2010;10:32-42.
    12. Kim KS. Microbial translocation of the blood-brain barrier. Int J Parasitol,.2006;36:607-614.
    13. Bortolussi R, Ferrieri P, Wannamaker LW. Dynamics of Escherichia coli infection and meningitis in infant rats. Infect Immun 1978;22:480-485.
    14. Dietzman DE, Fischer GW, Schoenknecht FD. Neonatal Escherichia coli septicemia- bacterial counts in blood. J Pediatr 1974;85:128-130.
    15. Barichello T, Generoso JS, Milioli G, Elias SG, Teixeira AL. Pathophysiology of bacterial infection of the central nervous system and its putative role in the pathogenesis of behavioral changes. Rev Bras Psiquiatr.2013;35:81-87.
    16. Scheld WM, Koedel U, Nathan B, Pfister HW. Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury. J Infect Dis 2002;186:225-233.
    17. Wang CY, et al. Prc contributes to Escherichia coli evasion of classical complement-mediated serum killing. Infect Immun.2012;80:3399-3409.
    18. Kim KS, Itabashi H, Gemski P, Sadoff J, Warren RL, Cross AS. The K1 capsule is the critical determinant in the development of Escherichia coli meningitis in the rat. J Clin Invest.1992;90:897-905.
    19. Sarff LD, et al. Epidemiology of Escherichia coli K1 in healthy and diseased newborns. Lancet 1975;1:1099-1104.
    20. Khan NA, Iqbal J, Siddiqui R. Escherichia coli K1-induced cytopathogenicity of human brain microvascular endothelial cells. Microb Pathog.2012;53:269-275.
    21. Johnson TJ, Nolan LK. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol Mol Biol Rev.2009;73:750-774.
    22. Welinder- Olsson C, Kaijser B. Enterohemorrhagic Escherichia coli (EHEC). Scand J Infect Dis.2005;37:405-416.
    23. Wijetunge DS, et al. Complete nucleotide sequence of pRS218, a large virulence plasmid, that augments pathogenic potential of meningitis-associated Escherichia coli strain RS218. BMC Microbiol 2014;14:203-219.
    24. Silver RP, Aaronson W, Sutton A, Schneerson R. Comparative analysis of plasmids and some metabolic characteristics of Escherichia coli K1 from diseased and healthy individuals. Infect Immun.1980;29:200-206.
    25. Logue CM, et al. Genotypic and phenotypic traits that distinguish neonatal meningitis-associated Escherichia coli from fecal E. coli isolates of healthy human hosts. Appl Environ Microbiol.2012;78:5824-5830.
    26. Peigne C, et al. The plasmid of Escherichia coli strain S88 (O45:K1:H7) that causes neonatal meningitis is closely related to avian pathogenic E. coli plasmids and is associated with high-level bacteremia in a neonatal rat meningitis model. Infect Immun.2009;77:2272-2284.
    27. Logue CM, et al. Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Appl Environ Microbiol.2008;74:7043-7050.
    28. Tivendale KA, et al. Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease. Infect Immun.2010;78:3412-3419.
    29. DebRoy C, et al. Complete sequence of pEC14_114, a highly conserved IncFIB/FIIA plasmid associated with uropathogenic Escherichia coli cystitis strains. Plasmid.2010;63:53-60.
    30. Kerur BM, Vishnu Bhat B, Harish BN, Habeebullah S, Uday Kumar C. Maternal genital bacteria and surface colonization in early neonatal sepsis. Indian J Pediatr 2006;73:29-32.
    31. Desai SP. Clinician's guide to diagnosis : a practical approach. 9 ed. New Hampshire: Lexi-Comp, 2001.
    32. Nataro JP, et al. Identification and cloning of a novel plasmid-encoded enterotoxin of enteroinvasive Escherichia coli and Shigella strains. Infect Immun.1995;63:4721-4728.
    33. Smajs , Weinstock GM. The iron- and temperature-regulated cjrBC genes of Shigella and enteroinvasive Escherichia coli strains code for colicin Js uptake. J Bacteriol 2001;183:3958-3966.
    34. 謝鳳汝. 研究致病型大腸桿菌質體上可能的攝鐵基因. 國立成功大學分子醫學研究所碩士論文; 2014.
    35. Troxell B, Hassan HM. Transcriptional regulation by ferric uptake regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol.2013;3:1-13.
    36. Cusumano CK, Hung CS, Chen SL, Hultgren SJ. Virulence plasmid harbored by uropathogenic Escherichia coli functions in acute stages of pathogenesis. Infection and immunity.2010;78:1457-1467.
    37. Mao BH, et al. Identification of Escherichia coli genes associated with urinary tract infections. J Clin Microbiol.2012;50:449-456.
    38. 陳冠福. eco60-63基因組在大腸桿菌K1受到血清攻擊時所扮演的角色. 國立成功大學分子醫學研究所碩士論文; 2013.
    39. Beck G, Habicht GS. Immunity and the invertebrates. Sci Am 1996;275:60-63.
    40. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol.2010;11:785-797.
    41. M Loos, B Wellek, R Thesen, W Opferkuch. Antibody-independent interaction of the first component of complement with Gram-negative bacteria. Infect Immun.1978;22:5-9.
    42. Janeway C. Immunobiology: the immune system in health and disease. 5 ed. New York: Garland Science, 2001.
    43. Fujita T, Matsushita M, Endo Y. The lectin-complement pathway--its role in innate immunity and evolution. Immunol Rev.2004;198:185-202.
    44. Hillyer C D. Blood banking and transfusion medicine: basic principles & practice. 2 ed. Pennsylvania: Elsevier Health Sciences, 2007.
    45. Meri S, Jarva H. Complement regulatory proteins.2008:1-8.
    46. Davis AE, Mejia P, Lu F. Biological activities of C1 inhibitor. Molecular immunology.2008;45:4057-4063.
    47. Blom AM, Villoutreix BO, Dahlback B. Complement inhibitor C4b-binding protein-friend or foe in the innate immune system? Mol Immunol.2004;40:1333-1346.
    48. Hourcade DE, Mitchell L, Kuttner-Kondo LA, Atkinson JP, Medof ME. Decay-accelerating factor (DAF), complement receptor 1 (CR1), and factor H dissociate the complement AP C3 convertase (C3bBb) via sites on the type A domain of Bb. J Biol Chem.2002;277:1107-1112.
    49. Pangburn MK. Differences between the binding sites of the complement regulatory proteins DAF, CR1, and factor H on C3 convertases. J Immunol 1986;136:2216-2221.
    50. Preissner KT. Structure and biological role of vitronectin. Annu Rev Cell Biol.1991;7:275-310.
    51. Su YC, Jalalvand F, Mörgelin M, Blom AM, Singh B, Riesbeck K. Haemophilus influenzae acquires vitronectin via the ubiquitous Protein F to subvert host innate immunity. Molecular microbiology.2013;87:1245-1266.
    52. Amdahl H, et al. Interactions between Bordetella pertussis and the complement inhibitor factor H. Mol Immunol.2011;48:697-705.
    53. Henningham A, Barnett TC, Maamary PG, Walker MJ. Pathogenesis of group A streptococcal infections. Discov Med.2012;13:329-342.
    54. Leying H, Suerbaum S, Kroll HP, Stahl D, Opferkuch W. The capsular polysaccharide is a major determinant of serum resistance in K-1-positive blood culture isolates of Escherichia coli. Infect Immun 1990;58:222-227.
    55. Pluschke G, Mayden J, Achtman M, Levine RP. Role of the capsule and the O antigen in resistance of O18:K1 Escherichia coli to complement-mediated killing. Infect Immun 1983;42:907-913.
    56. Prasadarao NV, Blom AM, Villoutreix BO, Linsangan LC. A novel interaction of outer membrane protein A with C4b binding protein mediates serum resistance of Escherichia coli K1. J Immunol.2002;169:6352-6360.
    57. Achtman M, et al. Six widespread bacterial clones among Escherichia coli K1 isolates. Infect Immun.1983;39:315-335.
    58. Quaas R, Landt O, Grunert HP, Beineke M, Hahn U. Indicator plates for rapid detection of ribonuclease T1 secreting Escherichia coli clones. Nucleic Acids Res 1989;17:3318.
    59. Kariyawasam S, Wilkie BN, Hunter DB, Gyles CL. Systemic and mucosal antibody responses to selected cell surface antigens of avian pathogenic Escherichia coli in experimentally infected chickens. Avian Dis.2002;46:668-678.
    60. Fomsgaard A, Freudenberg MA, Galanos C. Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels. J Clin Microbiol.1990;28:2627-2631.
    61. Russo TA, Beanan JM, Olson R, MacDonald U, Cope JJ. Capsular polysaccharide and the O-specific antigen impede antibody binding: a potential obstacle for the successful development of an extraintestinal pathogenic Escherichia coli vaccine. Vaccine.2009;27:388-395.
    62. Nikaido H, Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev.1985;49: 1-32.
    63. Nakamura S, et al. Molecular basis of increased serum resistance among pulmonary isolates of non-typeable Haemophilus influenzae. PLoS Pathog.2011;7:1-12.
    64. Buyck JM, Plésiat P, Traore H, Vanderbist F, Tulkens PM, Van Bambeke F. Increased susceptibility of Pseudomonas aeruginosa to macrolides and ketolides in eukaryotic cell culture media and biological fluids due to decreased expression of oprM and increased outer-membrane permeability. Clin Infect Dis.2012;55:534-542.
    65. Zipfel PF, Würzner R, Skerka C. Complement evasion of pathogens: common strategies are shared by diverse organisms. Mol Immunol.2007;44:3850-3857.
    66. King MR, Steenbergen SM, Vimr ER. Going for baroque at the Escherichia coli K1 cell surface. Trends Microbiol.2007;15:196-202.
    67. Born J, Bhakdi S. Does complement kill E. coli by producing transmural pores? Immunology 1986;59:139-145.
    68. Wright SD, Levine RP. How complement kills E. coli. I. Location of the lethal lesion. J Immunol 1981;127:1146-1151.
    69. Smajs D, Weinstock G M. The iron- and temperature-regulated cjrBC genes of Shigella and enteroinvasive Escherichia coli strains code for colicin Js uptake. J Bacteriol 2001;183:3958-3966.
    70. Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol.2013;3:1-24.
    71. Wilks A, Burkhard K A. Heme and virulence: how bacterial pathogens regulate, transport and utilize heme. Nat Prod Rep.2007;24:511-522.
    72. Ochsner UA, Johnson Z, Vasil ML. Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology 2000;146:185-198.
    73. Watts RE, et al. Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli. Infect Immun.2012;80:333-344.
    74. Valdebenito M, Crumbliss AL, Winkelmann G, Hantke K. Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. Int J Med Microbiol.2006;296:513-520.
    75. Cornelis P, Dingemans J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol.2013;3:75-81.
    76. Hara-Kaonga B, Pistole TG. OmpD but not OmpC is involved in adherence of Salmonella enterica serovar typhimurium to human cells. Can J Microbiol 2004;50:719-727.
    77. Ipinza F, et al. Participation of the Salmonella OmpD porin in the infection of RAW264.7 macrophages and BALB/c mice. PloS one.2014;9:1-11.
    78. Gil-Cruz C, et al. The porin OmpD from nontyphoidal Salmonella is a key target for a protective B1b cell antibody response. Proc Natl Acad Sci U S A,.2009;106:9803-9808.
    79. Xie Y, Yao Y, Kolisnychenko V, Teng CH, Kim KS. HbiF regulates type 1 fimbriation independently of FimB and FimE. Infect Immun.2006;74:4039-4047.
    80. Iwahi T, Abe Y, Nakao M, Imada A, Tsuchiya K. Role of type 1 fimbriae in the pathogenesis of ascending urinary tract infection induced by Escherichia coli in mice. Infect Immun 1983;39:1307-1315.
    81. Hendrickson BA, Guo J, Laughlin R, Chen Y, Alverdy JC. Increased type 1 fimbrial expression among commensal Escherichia coli isolates in the murine cecum following catabolic stress. Infect Immun.1999;67:745-753.
    82. Lerner CG, Inouye M. Low copy number plasmids for regulated low-level expression of cloned genes in Escherichia coli with blue/white insert screening capability. Nucleic Acids Res.1990;18:4631.

    下載圖示 校內:2020-04-15公開
    校外:2020-04-15公開
    QR CODE