簡易檢索 / 詳目顯示

研究生: 鄭凱方
Cheng, Kai-Fang
論文名稱: 批次製程中水網路最適化的研究
Optimization of water networks in batch processes
指導教授: 張珏庭
Chang, Chuei-Tin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 129
中文關鍵詞: 批次排程程序用水系統廢水處理系統最適化緩衝槽
外文關鍵詞: NLP, reuse, STN
相關次數: 點閱:100下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的為建立批式製程水網路之通用混整數非線性模式,使其成為可降低工廠設備操作成本並增加用水效率的設計工具。過去的研究大多分別探討批次排程、程序用水系統及廢水處理系統的最適化問題,但在本研究中,我們整合了三者在同一數學規劃模式中,不但可適當的考慮其間交互之影響,也可因此獲得更優越的整體設計。具體設計內容包含短期生產排程設計、緩衝槽數量及大小的選擇、水網路管線的實際管線結構及操作策略等。此外,我們也運用適當之邏輯限制式策略性地調整網路結構,並利用一系列的範例來展示此模式之有效性。

    A general mixed-integer nonlinear programming model (MINLP) is developed in this study to synthesize water networks in batch processes. The proposed model formulation is believed to be superior to the available ones. In the past, the tasks of optimizing batch schedules, process water reuse subsystems and wastewater treatment subsystems were performed individually. In this study, all three optimization problems are incorporated in the same mathematical programming model. By properly addressing the issue of interaction between subsystems, better overall designs can be generated. The resulting design specifications include: the short-term production schedule, the number and sizes of buffer tanks, the physical configuration of pipeline network, and the operating policies of water flows. The network structure can also be strategically manipulated by imposing suitable logic constraints. A series of illustrative examples are presented to demonstrate the effectiveness of the proposed approach.

    第一章 緒論                        1 第二章 批式製程整廠水網路的最佳設計            9  2.1 生產排程設計                  9   2.1.1 狀態-任務網路 (State-Task Network, STN)   10   2.1.2 時間的劃分                 11   2.1.3 符號說明                  11   2.1.4 數學規劃模式                13   2.1.5 例題一                   16  2.2 程序用水網路設計                   21   2.2.1 集合                    21   2.2.2 超結構                   22   2.2.3 數學規劃模式                24   2.2.4 例題二                   33   2.2.5 例題三                   52  2.3 廢水處理網路設計                   59   2.3.1 集合                    59   2.3.2 超結構                   60   2.3.3 數學規劃模式                61   2.3.4 例題四                   65 第三章 水網路的整合                    83  3.1 程序用水網路與廢水處理網路之整合           83   3.1.1 集合定義                  83   3.1.2 超結構的建構步驟              83   3.1.3 數學規劃模式                85   3.1.4 例題五                   85   3.1.5 例題六                   89  3.2 生產排程及用水網路設計之整合             111   3.2.1 基本架構                  111   3.2.2 例題七                   111  3.3 生產排程、程序用水網路及廢水處理網路之整合設計    117   3.3.1 基本架構                  117   3.3.2 例題八                   117 第四章 結論與展望                      123 參考文獻                           125

    Almato, M., A. Espuna, and L. Puigjaner, “Optimization of Water Use in Batch Process Industries,” Comput. Chem. Eng., 23, 1427, 1999.
    Almato, M., E. Sanmarti, A. Espuna, and L. Puigjaner, “Rationalizing the Water Use in Batch Process Industry,” Comput. Chem. Eng., 21, s971, 1997.
    Bagajewicz, M., “Review of Recent Design Procedures for Water 
     Networks in Refineries and Process Plants,” Comput. Chem. Eng., 24, 2093, 2000.
    Bowmann, E. H., “The Schedule-Sequence Problem,” Operation Research, 
     7, 621, 1959.
    Chang, C. T., and B. H. Li, “A Mathematical Programming Model for  Discontinuous Water Reuse System Design,” Industrial & Engineering  Chemistry Research, 2006 (accepted).
    Chang, C. T., and B. H. Li, “Optimal Design of Wastewater   
     Equalization Systems in Batch Processes,” Comput. Chem. Eng., 30,  797, 2006.
    Chang, C. T., and B. H. Li, “Improved Optimization Strategies for  Generating Practical Water-Usage and -Treatment Network Structures,”  Ind. Eng. Chem. Res., 44, 3607, 2005.
    Feng, X., and W. D. Seider, “New Structure and Design Methodology  for Water Networks,” Ind. Eng. Chem. Res., 40, 6140, 2001.
    Floudas, C. A., and X. X. Lin, “Review: Continuous-Time Verses  
     Discrete-Time Approaches for Scheduling of Chemical Processes,”  
     Computers and Chem. Eng., 28, 2109, 2004.
    Galan, B., and I. E. Grossmann, “Optimal Design of Distributed  
     Wastewater Treatment Networks,” Ind. Eng. Chem. Res., 37, 4036,  
     1998.
    Hernandez-Suarez, R., J. Castellanos-Fernandez, and J. M. Zamora,  
     “Superstructure Decomposition and Parametric Optimization Approach for the Synthesis of Distributed Wastewater Treatment Networks,” Ind.  
     Eng. Chem. Res., 43(9), 2175, 2004.
    Huang, C. H., C. T. Chang, H. C. Ling, and C. C. Chang, “A 
     Mathematical Programming Model for Water Usage and Treatment Network Design,” Ind. Eng. Chem. Res., 38, 2666, 1999.
    Hui, C. W., B. H. Li, and R. Smith, “Cutting the Wastewater Peaks for Cylic Batch Production Plants,” Eng. Life Sci., 3, 77, 2003.
    Ierapetritou, M.G., and C. A. Flouda, “Effective Continuous-Time 
     Formulation for Short-Term Scheduling. 1. Multipurpose Batch 
     Processes,” Ind. Eng. Chem. Res., 37, 4341, 1998a.
    Ierapetritou, M. G., and C. A. Flouda, “Effective Continuous-Time  
     Formulation for Short-Term Scheduling. 2. Continuous and  
     Semicontinuous Processes,” Ind. Eng. Chem. Res., 37, 4341, 1998b.
    Kim, J. K., and R. Smith, “The Automated Design of Discontinuous  
     Water Systems,” Process Safety and Environmental Protection, 82(May), 238, 2004.
    Kondili, E., C. C. Pantelides, and R. W. Sargent, “A General 
     Algorithm for Short-Term Scheduling of Batch Operations. Part 1: 
     Milp Formulation,” Computers and Chemical Engineering, 17, 211,  
     1993.
    Kuo, W. C. J., and R. Smith, “Effluent Treatment System Design,”  Chem. Eng. Sci., 52, 4273, 1997.
    Kuo, W. C. J., and R. Smith, “Designing for the Interactions  
     Between Water-Use and Effluent Treatment,” Trans. Inst. Chem. Eng., 76(Part A), 287, 1998.
    Lee, K. H., H. I. Park, and I. B. Lee, “A Novel Nonuniform  
     Discrete Time Formulation for Short-Term Scheduling of Batch and  
     Continuous Processes,” Ind. Eng. Chem. Res., 40, 4902, 2001.
    Li, B. H., X. Sh. Fan, and P. J. Yao, “A New Method for Effluent Treatment System Design,” Chinese Journal of Chemical Engineering,  10(3), 273, 2002.
    Li, B. H., C. W. Hui, and R. Smith, “Wastewater Equalization for  Batch Production Plants,” Eng. Life Sci., 2, 190. 2002a
    Li, W. K., C. W. Hui, B. Hua, and Zh.X. Tong, “Scheduling Crude  Oil Unloading Storage and Processing,” Ind. Eng. Chem. Res., 41,  6723, 2002b.
    Majozi, T., “Wastewater Minimization Using Central Reusable Water  
     Storage in Batch Plants,” Computers & Chemical Engineering, 29,  
     1631-1646, 2005a.
    Majozi, T., “An Effective Technique for Wastewater Minimization in  
     Batch Processes,” Journal of cleaner production, 13, 1374, 2005b.
    Maravelias, C. T., “Mixed-Time Representation for State-Task Network  Models,” Ind. Eng. Chem. Res., 44, 9129, 2005.
    Maravelias, C. T., and I. E. Grossmann, “Additions and Corrections  of New General Continuous-Time State-Task Network Formulation for  
     Short-Term Scheduling of Multipurpose Batch Plants,” Ind. Eng. Chem. Res., 42, 4422, 2003.
    McLaughlin, L. A., H. J. McLaugh, and K. A. Groff, “Develop an 
     Effective Wastewater Treatment Strategy,” Chem. Eng. Prog., 88(Sept), 34, 1992.
    Neumann, K., C. Schwindt, and N. Trautmann, “Scheduling of Continuous and Discontinuous Material Flows with Intermediate Storage 
     Restrictions,” European of operational research, 165, 495, 2005.
    Pinto, J. M., and I. E. Grossmann, “An Alternate Milp Model for  
     Short-Term Schedulig of Process Systems,” Ind. Eng. Chem. Eng. 
     Res., 81, 338, 1996.
    Pinto, J. M., and I. E. Grossmann, “A Contimnous Time Mixed Integer Linear Programming Model for Short Term Scheduling of Multistage 
     Batch Plants,” Ind. Eng. Chem. Eng. Res., 34, 3037, 1995.
    Pinto, J. M., and I. E. Grossmann, “Optimal Cyclic Scheduling of 
     Multistage Continuous Multiproduct Plants,” Computers Chem. Eng., 18, 797, 1994.
    Puigjaner, L., A. Espuna, and M. Almato, “A Software Tool for 
     Helping in Decision-Making about Water Management in Batch Process 
     Industries,” Waste Management, 20, 645, 2000.
    Rippin, D. W. T., “Batch Process Planning,” Chemical Engineering, 
     May, 100, 1991.
    Rippin, D. W. T., “Simulation of Single and Multiproduct Batch 
     Chemical Plants for Optimal Design and Operation,” Computers Chem.. Eng., 7, 137, 1983.
    Renda et al. “Batch Processing System Engineering,” (Edited by 
     Reklaitis, G. V., Sunol, A. K., Rippin, D. W. and Hortacsu, O.),  821, 1996.
    Savelski, M., and M. Bagajewicz, “On the Necessary Conditions of  
     Optimality of Water Utilization Systems in Process Plants with 
     Multiple Contaminants,” Chem. Eng. Sci., 58(23-24), 5349 , 2003.
    Shah, N., C. C. Pantelides, and R. W. H. Sargent, “A general  
     algorithm for short-term scheduling of batch operations. PartⅡ.  
     Computational issues.,” Computers and Chemical Engineering, 17, 229, 1993.
    Tsai, M. J., and C. T. Chang, “Water Usage and Treatment Network  Design Using Genetic Algorithms,” Ind. Eng. Chem. Res., 40, 4874,  2001.
    Takama, N., T. Kuriyama, K. Shiroko, and T. Umeda, “Optimal Water  Allocation in a Petroleum Refinery,” Comput. Chem. Eng., 4, 251,  1980.
    Wang, B., X. Feng, and Z. Zhang, “A Design Methodology for  
     Multiple-Contaminant Water Networks with Single Internal Water Main,” Comput. Chem. Eng., 27, 903, 2003.
    Wang, Y. P., and R. Smith, “Time Pinch Analysis,” Chem. Eng. Des. Res., 73(Nov.), 905, 1995.
    Wang, Y. P., and R. Smith, ” Wastewater Minimization,” Chem. Eng.  Sci., 49, 981, 1994a.
    Wang, Y-P, and R. Smith, “Design of Distributed Effluent Treatment  Systems,” Chem. Eng. Sci., 49(18), 3127, 1994b.
    Yang, Y. H., H. H. Lou, and Y. L. Huang, “Synthesis of an Optimal Wastewater Reuse Network,” Waste Manage., 20, 311, 2000.

    下載圖示 校內:立即公開
    校外:2007-01-29公開
    QR CODE