簡易檢索 / 詳目顯示

研究生: 徐嘉群
Hsu, Chia-Chun
論文名稱: 以費雪訊息量處理有雜訊的拉普拉斯逆變換問題
Inverse Laplace transformation of noisy data using Fisher information
指導教授: 楊緒濃
Nyeo, Su-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 41
中文關鍵詞: 逆問題不適定問題Tikhonov正規化費雪訊息量
外文關鍵詞: Inverse Problem, Ill-Posedness, Tikhonov Regularization, Fisher Information
相關次數: 點閱:93下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 逆問題的研究起源於科學和工程。其中具有第一類Fredholm積分方程中帶有指數遞減形式的積分變換核的問題是一類不適定問題。在這份論文中,我們藉由Tikhonov正規化方法來探討這類問題。
    本文將列出針對第一類Fredholm積分方程求出良適定義解的數值演算法,並且利用L-曲線的方式決定最佳解。
    最後,我們會把上述方法應用在對數常態分佈函數所模擬的單峰值與雙峰值函數的資料,並且得出本文所用的方法可以恰當的重建單峰值情形,並且相比於其他演算法下得到具有相當精確程度的雙峰值情形。

    Inverse problems arise in many areas of research and applications. The Fredholm integral equation of the first kind with an exponential decay kernel is an ill-posed inverse problem. In this thesis, the equation is studied using the Tikhonov regularization method with Fisher information as a regularization function.
    A numerical algorithm for solving the Fredholm integral equation is outlined to obtain well-defined solutions and an optimal, unique solution is determined by the L-curve criterion.
    In our study, several sets of simulated data are created from the log-normal distribution function to evaluate the performance of our algorithm. We show that the algorithm can efficiently recover broad single-peak distributions and double-peak distributions with higher accuracy than the well-known algorithms of the maximum-entropy method and CONTIN.

    1 Introduction 2 2 Inverse Problems 4 2.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Hadamard’s conditions for well-posedness . . . . . . . . . . . . . . . . . 5 2.3 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 Analytic Solution of the Linear Inverse Problem without Noise . . . . . 7 2.5 Least Square Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Laplace Transform Inversion 9 3.1 The Inversion Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Methods for Solving Least-Square Problem . . . . . . . . . . . . . . . . 10 3.2.1 Truncated Singular Value Decomposition . . . . . . . . . . . . . 10 3.2.2 Eigenfunctions of the Kernel . . . . . . . . . . . . . . . . . . . . 10 3.2.3 Non-Negative Singular Value Decomposition . . . . . . . . . . . 11 3.2.4 Tikhonov Regularization . . . . . . . . . . . . . . . . . . . . . . 12 4 Fisher Information Regularization 13 4.1 The Iteration Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.3 Criterion for Choosing λ . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 Evaluation of Algorithm 16 5.1 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.2 Comparing Auto-Correlation Functions for Different Cases . . . . . . . 18 5.3 Effect of Different Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.4 Fitting Single-Peak Distribution . . . . . . . . . . . . . . . . . . . . . . 22 5.5 Fitting Double-Peak Distribution . . . . . . . . . . . . . . . . . . . . . 25 5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6 Conclusion 29 Appendix A Fisher Information 30 Appendix B Codes Used in This Thesis 33

    [1] M. Anton, H. Weisen, M. J. Dutch, W. von der Linden, F. Buhlmann, R. Chavan, B. Marletaz, P. Marmillod, and P. Paris. X-ray tomography on the tcv tokamak. Plasma Physics and Controlled Fusion, 38(11):1849, 1996.
    [2] R.C. Aster, C.H. Thurber, and B. Borchers. Parameter Estimation and Inverse Problems. International geophysics series. Elsevier Academic Press, 2005.
    [3] P Barone, A Ramponi, and G Sebastiani. On the numerical inversion of the laplace transform for nuclear magnetic resonance relaxometry. Inverse Problems, 17(1): 77, 2001.
    [4] P. Berman, O. Levi, Y. Parmet, M. Saunders, and Z. Wiesman. Laplace inversion of low-resolution nmr relaxometry data using sparse representation methods. Concepts in Magnetic Resonance Part A, 42(3):72–88, 2013.
    [5] B.J. Berne and R. Pecora. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics. Dover Books on Physics Series. Dover Publications, 2000.
    [6] A. Björck. Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics, 1996.
    [7] D.R. Cox. Principles of Statistical Inference. Cambridge University Press, 2006.
    [8] I.J.D. Craig and J.C. Brown. Inverse problems in astronomy: a guide to inversion strategies for remotely sensed data. A. Hilger, 1986.
    [9] A.C. Davison. Statistical Models. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2003.
    [10] C. Epstein and J. Schotland. The bad truth about laplace’s transform. SIAM Review, 50(3):504–520, 2008.
    [11] P. C. Hansen. The l-curve and its use in the numerical treatment of inverse problems. In in Computational Inverse Problems in Electrocardiology, ed. P. Johnston, Advances in Computational Bioengineering, pages 119–142. WIT Press, 2000.
    [12] J. Jakeš. Regularized positive exponential sum (repes) program - a way of inverting laplace transform data obtained by dynamic light scattering. Collection of Czechoslovak Chemical Communications, 60(11):1781–1797, 1995.
    [13] S. I. Kabanikhin. Definitions and examples of inverse and ill-posed problems. Journal of Inverse and Ill-posed Problems, 16:317–357, 2008.
    [14] J. G. McWhirter and E. R. Pike. On the numerical inversion of the laplace transform and similar fredholm integral equations of the first kind. Journal of Physics A: Mathematical and General, 11(9):1729, 1978.
    [15] J.G. McWhirter. A stabilized model-fitting approach to the processing of laser anemometry and other photon-correlation data. Optica Acta: International Journal of Optics, 27(1):83–105, 1980.
    [16] J. Mlynar, J. M. Adams, L. Bertalot, and S. Conroy. First results of minimum fisher regularisation as unfolding method for jet ne213 liquid scintillator neutron spectrometry. Fusion Engineering and Design, 74(1–4):781–786, 2005. Proceedings of the 23rd Symposium of Fusion Technology (SOFT–23).
    [17] J. Mlynar, L. Bertalot, M. Tsalas, G. Bonheure, and S. Conroy. Neutron spectra unfolding with minimum fisher regularisation. In Proceedings of Science (PoS) - International Workshop on Fast Neutron Detectors and Applications. PoS, April 2006.
    [18] S. L. Nyeo and B. Chu. Maximum-entropy analysis of photon correlation spectroscopy data. Macromolecules, 22(10):3998–4009, Oct 1989.
    [19] M. Odstrcil, J. Mlynar, T. Odstrcil, B. Alper, and A. Murari. Modern numerical methods for plasma tomography optimisation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 686(0):156–161, 2012.
    [20] N. Ostrowsky, D. Sornette, P. Parker, and E.R. Pike. Exponential sampling method for light scattering polydispersity analysis. Optica Acta: International Journal of Optics, 28(8):1059–1070, 1981.
    [21] E.R. Pike, J.G. McWhirter, M. Bertero, and C. de Mol. Generalised information theory for inverse problems in signal processing. Communications, Radar and Signal Processing, IEE Proceedings F, 131(6):660–667, October 1984.
    [22] W. Verkruysse, B. Majaron, B. Choi, and J.S. Nelson. Combining singular value decomposition and a non-negative constraint in a hybrid method for photothermal depth profiling. Review of Scientific Instruments, 76(2):024301–024301–6, Feb 2005.
    [23] Peng Xiao and Robert E. Imhof. Inverse method analysis in optothermal skin measurements. Proc. SPIE, 3601:340–347, 1999.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE