| 研究生: |
蘇怡達 Su, I-Ta |
|---|---|
| 論文名稱: |
噴覆成型製作之超高矽過共晶鋁矽合金的塑性加工性及其機械性質之探討 Study of the Plastic Workability and Mechanical Properties of Ultra Si Hypereutectic Al-Si Alloy Synthesized by Spray Forming Process |
| 指導教授: |
曹紀元
Tsao, Chi-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 過共晶鋁矽合金 、噴覆成型 、塑性加工性 、間接擠型 |
| 外文關鍵詞: | Hypereutectic Al-Si alloy, Spray forming, Plastic workability, Indirect extrusion |
| 相關次數: | 點閱:119 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究進行應用於引擎汽缸套產品的超高矽鋁(矽含量≥20wt.%)合金及其擠型材的研究及製造,選擇商用鋁合金AC9A(23wt.% Si)為原材料,並將矽含量增加至30wt.%及35wt.%,且利用噴覆成型製程製造AC9A-30Si及AC9A-35Si過共晶鋁矽合金材料可改善材料的熱機性質,其可歸功於快速凝固技術造成細微的矽顆粒均勻地分布在基地內。
本研究利用高溫壓縮試驗探討鑄造AC9A、噴覆成型AC9A-30Si及AC9A-35Si合金之高溫塑性加工性,研究變形溫度、應變速率及矽含量等參數對材料塑性變形行為之影響,並藉由Zenner-Hollomon方程式了解材料在塑性變形時,流變應力及顯微組織與變形溫度及應變速率的相互關係。
本研究利用間接擠型探討鑄造AC9A、噴覆成型AC9A-30Si及AC9A-35Si合金之擠型加工性,研究擠型溫度、平均應變速率、矽含量及擠型比對材料之加工性及微觀組織的影響;並利用拉伸試驗探討間接擠型之參數對材料機械性質之影響,因而建立擠型材的最佳化間接擠型參數。
Ultra Si(Si content ≥20wt.%)aluminum alloy and its extruded rod which were applied to the products of cylinder liner of engine were researched and fabricated in present study. We used commercial aluminum alloy AC9A(23wt.% Si)as the raw material and increased the Si content from 23wt.% to 30wt.% and 35wt.%. Spray forming process was employed to produce the hypereutectic aluminum silicon alloy AC9A-35Si and AC9A-35Si to improve their thermo-mechanical properties, which was attributed to rapid solidification technology of spray forming process resulting in very fine silicon particles uniformly distributed in matrix. Compression test at elevated temperature was employed to research the hot plastic workability of as-cast AC9A and spray-formed AC9A-30Si and AC9A-35Si alloys to understand the effect of deformation temperature, strain rate and silicon content upon the behavior of plastic deformation of material. Furthermore, we used Zenner-Hollomon equation to study the relation of flow stress and microstructure between deformation temperature and strain rate. Indirect extrusion was employed to research the workability of as-cast AC9A and spray-formed AC9A-30Si and AC9A-35Si alloys to understand the effect of extrusion temperature, mean strain rate, extrusion ratio and silicon content upon the workability and microstructure of extruded rod. And we used tensile test to study the effect of parameters of indirect extrusion upon the mechanical properties of extrusion rod. As a result, we could established the optimum parameters of indirect extrusion for extruded product.
1. V.C. Srivastava, et al., Evolution of microstructure in spray formed Al–18%Si alloy. Materials Science and Engineering: A, 2004. 39: p. 6821-6825.
2. G. Bao and Z. Lin, High strain rate deformation in particle reinforced metal matrix composites. Acta Materialia, 1996. 44(3): p. 1011-1019.
3. C.-W. Nan and D.R. Clarke, The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites. Acta Materialia, 1996. 44(9): p. 3801-3811.
4. Radhakrishna Bhat, B.V., Y.R. Mahajan, and Y.V.R.K. Prasad, Effect of volume fraction of SiCp reinforcement on the processing maps for 2124 Al matrix composites. Metallurgical and Materials Transactions A, 2000. 31(3): p. 629-639.
5. Spigarellia, S., et al., An analysis of hot formability of the 6061+20% Al2O3 composite by means of different stability criteria. Materials Science and Engineering: A, 2002. 327(2): p. 144-154.
6. Xia, X., P. Sakaris, and H.J. McQueen, Hot deformation, dynamicrecovery, and recrystallisation behaviour of aluminium 6061-SiCp composite. Materials Science and Technology, 1994. 10(6): p. 487-496.
7. Hong1, S.I., G.T. Gray III, and J.J. Lewandowski, Dynamic deformation behavior of Al-Zn-Mg-Cu alloy matrix composites reinforced with 20 Vol.% SiC. Acta Materialia, 1993. 41(8): p. 2337–2351.
8. Lloyd, D.J., Particle reinforced aluminium and magnesium matrix composite. International Materials Reviews, 1994. 39(1): p. 1-23.
9. R.J. Arsenault, L. Wang, and C.R. Feng, Strengthening of composites due to microstructural changes in the matrix. Acta Materialia, 1991. 39(1): p. 47-57.
10. Qu, S., et al., A study of particle size effect and interface fracture in aluminum alloy composite via an extended conventional theory of mechanism-based strain-gradient plasticity. Composites Science and Technology, 2005. 65(7-8): p. 1244-1253.
11. R.J. Arsenault, , The strengthening of aluminum alloy 6061 by fiber and platelet silicon carbide. Materials Science and Engineering, 1984. 64: p. 171-181.
12. G. González-Doncel and O.D. Sherby, High temperature creep behavior of metal matrix Aluminum SiC composites. Acta Materialia, 1993. 41(10): p. 2797-2805.
13. V.S. Aigbodion and S.B. Hassan, Effects of silicon carbide reinforcement on microstructure and properties of cast Al–Si–Fe/SiC particulate composites. Materials Science and Engineering: A, 2007. 447(1-2): p. 355-360.
14. T.S. Srivatsan and R. Auradkar, The influence of volume fraction of silicon carbide particulate reinforcement on the tensile properties of an aluminium metal-matrix composite. Journal of Materials Science Letters, 1991. 10(9): p. Pages 500-502.
15. J.J.Williams, et al., Effect of overaging and particle size on tensile deformation and fracture of particle-reinforced aluminum matrix composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002. 33(12): p. Pages 3861-3869.
16. S.F. Corbin and D.S. Wilkinson, Low strain plasticity in a particulate metal matrix composite. Acta Metallurgica et Materialia, 1994. 42(4): p. 1319–1327.
17. D.J. Lloyd, Aspects of fracture in particulate reinforced metal matrix composites. Acta metall, mater, 1991. 39(1): p. 59-71.
18. A.Mocellin, Y.Brechet, and R.Fougers, Fracture of an osprey™ AlSiFe alloy :A microstructure based model for fracture of microheterogeneous materials. Acta Materialia, 1995. 43(3): p. 1135-1140.
19. V.V. Bhanuprasad, et al., Fractography of metal matrix composites. Key Engineering Materials, 1995. 104-107(2): p. 495-506.
20. G. Guiglionda and W.J. Poole, The role of damage on the deformation and fracture of Al–Si eutectic alloys. Materials Science and Engineering: A, 2002. 336(1-2): p. 159-169.
21. S.H. Goods and L.M. Brown, Overview No. 1: The nucleation of cavities by plastic deformation. Acta Metallurgica, 1979. 27(1): p. 1-15.
22. J.R. Rice, On the ductile enlargement of voids in triaxial stress fields. Journal of the Mechanics and Physics of Solids, 1969. 17(3): p. 201–217.
23. L.M.Brown and J.D.Embury, Initiation and growth of voids at second phase particles. Inst Met (London) Monogr Rep Ser, 1973. 1(3): p. 164-169.
24. Y. Brechet, et al., A note on particle comminution at large plastic strains in Al-SiC composites. Scripta Materialia, 1993. 28(1): p. 47-51.
25. M. Ferry, Discontinuously reinforced metal matrix composites in The deformation and processing of structural materials. 2005. p. 203-251.
26. J. Llorca, et al., Particulate fracture during deformation. Metallurgical Transactions A, 1993. 24(7): p. 1575-1588.
27. K. Byung-Chul, P. Gyeong-Su, and Y. Yeon-Chul, The effects of SiC particle volume fraction on the microstructure and hot workability of SiC/AA 2024 composites. Materials Processing Technology, 1999. 95: p. 210-215.
28. S.V.S. Narayana Murty, B. Nageswara Rao, and B.P. Kashyap, On the hot working characteristics of 6061Al–SiC and 6061–Al2O3 particulate reinforced metal matrix composites. Composites Science and Technology, 2003. 63(1): p. 119-135.
29. H. Asgharzadeh, A. Simchi, and H.S. Kim, High-temperature deformation and structural restoration of a nanostructured Al alloy. Scripta Materialia, 2012. 66(11): p. 911-914.
30. H.E. Hu, et al., Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation. Materials Science and Engineering: A, 2008. 488(1-2): p. 64-71.
31. E. Cerri, et al., Comparative hot workability of 7012 and 7075 alloys after different pretreatments. Materials Science and Engineering: A, 1995. 197(2): p. 181-198.
32. T. Sheppard, and A. Jackson, Constitutive equations for use in prediction of flow stress during extrusion of aluminium alloys. Materials Science and Technology, 1997. 13(3): p. 203-209.
33. N. Jin, et al., Hot deformation behavior of 7150 aluminum alloy during compression at elevated temperature. Materials Characterization, 2009. 60(6): p. 530-536.
34. V.C. Srivastava, et al., Hot-deformation behaviour of spray-formed 2014 Al+SiCP metal matrix composites. Materials Science and Engineering: A, 2008. 477(1-2): p. 86-95.
35. S. Gourdet and F. Montheillet, An experimental study of the recrystallization mechanism during hot deformation of aluminium. Materials Science and Engineering A, 2000. 283: p. 274-288.
36. McQueen, H.J., Substructural influence in the hot rolling of Al alloys. JOM, 1998. 50(6): p. 28-33.
37. H. Asgharzadeh, A. Simchi, and H.S. Kim, Dynamic restoration and microstructural evolution during hot deformation of a P/M Al6063 alloy. Materials Science and Engineering: A, 2012. 542: p. 56-63.
38. T. Sakai and J.J. Jonas, Plastic deformation: role of recovery and recrystallization, Science and Technology. p. 7079–7084.
39. R.H. Bricknell and J.W. Edington, Deformation characteristics of an Al-6Cu-O. 4Zr superplastic alloy. Metallurgical Transactions A, 1979. 10(9): p. 1257-1263.
40. H. Gudmundson, D. Brooks, and J.A. Wert, Acta Materialia, 1991. 39: p. 1229-1239.
41. S.J. Hales and T.R. Mcnelley, Microstructural evolution by continuous recrystallization in a superplastic Al-Mg alloy. Acta Materialia, 1988. 36(5): p. 1229-1239.
42. McQueen, H.J., et al., Microstructural evolution in Al deformed to strains of 60 at 400°C. Scripta Materialia, 1985. 19(1): p. 73-78.
43. M.E. Kassner, M.E. McMahon, Dislocation microstructure of aluminum deformed to very large steady-state creep strains. Metallurgical transactions. A, Physical metallurgy and materials science, 1987. 18(5): p. 835-846.
44. J.K. Solberg, McQueen, H.J., N. Ryum, E. Nes, Influence of ultra-high strains at elevated temperatures on the microstructure of aluminium. Part I. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1989. 60(4): p. 447-471.
45. G.A. Henshall, M.E. Kassner, and H.J. McQueen, Dynamic restoration mechanisms in Al-5.8 At. Pct Mg deformed to large strains in the solute drag regime. Metallurgical Transactions A, 1992. 23(3): p. 881-889.
46. W. Blum, et al., Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn (AA5083). Materials Science and Engineering: A, 1996. 205(1-2): p. 23-30.
47. W. Blum, et al., Dynamic restoration mechanisms in hot torsion of Al-SMg and Al. Materials Research and Advanced Techniques, 1996. 87(1): p. 14-23.
48. H. Yamagata, Dynamic recrystallization of single-crystalline aluminum during compression tests. Scripta Materialia, 1992. 27(6): p. 727-732.
49. H. Yamagata and L. Yamaha Motor Co., Microstructural evolution of single-crystalline aluminum during multipeak stress oscillation at 623 K. Scripta Materialia, 1992. 27(9): p. 1157-1160.
50. D. Ponge, M. Bredehöft, and G. Gottstein, Dynamic recrystallization in high purity aluminum. Scripta Materialia, 1997. 37(11): p. 1769-1775.
51. F.R. Castro-Fernandez and C.M. Sellars, Static recrystallisation and recrystallisation during hot deformation of Al-1Mg-1Mn alloy. Materials Science and Technology, 1988. 4(7): p. 621-627.
52. T. Sheppard and M.G. Tutcher, Development of duplex deformation substructure during extrusion of a commercial Al-5Mg-0. 8Mn alloy. Metal science, 1980. 14(12): p. 579-589.
53. C. Perdrix, M.Y. Perrin, and F. Montheillet, Mechanical behavior and structure development of aluminum during high amplitude hot deformation. Mem Etud SciCI Rev Metall, 1981. 78(6): p. 309-320.
54. S. Gourdet, et al., Recrystallization during hot deformation of aluminium. Materials Science Forum, 1996. 217-222(1): p. 441-446.
55. T.G. Niea, et al., High strain rate superplasticity in a continuously recrystallized Al–6%Mg–0.3%Sc alloy. Acta Materialia, 1998. 46(8): p. 2789-2800.
56. O.S. Sitdikov, et al., Evolution of the microstructure and mechanisms of formation of new grains upon severe plastic deformation of the 2219 Aluminum Alloy. Physics of Metals and Metallography, 2001. 92(3): p. 270-280.
57. L.M. Dougherty, I.M. Robertsona, and J.S. Vetrano, Direct observation of the behavior of grain boundaries during continuous dynamic recrystallization in an Al–4Mg–0.3Sc alloy. Acta Materialia, 2003. 51(15): p. 4367-4378.
58. R.H. Bricknella and J.W. Edington, Textures in a superplastic Al-6Cu-0.3Zr alloy. Acta Materialia, 1979. 27(8): p. 1301-1311.
59. M.T. Lyttle and J.A. Wert, Modelling of continuous recrystallization in aluminium alloys. Materials Science 1994. 29(12): p. 3342-3350.
60. E.-W. Lee, Microstructure evolution during processing and superplastic flow in a high magnesium Al-Mg alloy. Materials Science and Engineering, 1987. 93: p. 45-55.
61. T.R. McNelley, E.W. Lee, and M.E. Mills, Superplasticity in a thermomechanically processed High-Mg, Al-Mg alloy. Metallurgical Transactions A, 1986. 17(6): p. 1035-1041.
62. E.W. Lee, T.R. McNelley, and A.F. Stengel, The influence of thermomechanical processing variables on superplasticity in a High-Mg, Al-Mg alloy. Metallurgical Transactions A, 1986. 17(6): p. 1043-1050.
63. B. Eghbalia, et al., Characterization on ferrite microstructure evolution during large strain warm torsion testing of plain low carbon steel. Materials Science and Engineering: A, 2006. 435-436(5): p. 499-503.
64. C.M. Cepeda-Jiménez, et al., Microstructural characterization by electron backscatter diffraction of a hot worked Al–Cu–Mg alloy. Materials Science and Engineering: A, 2011. 528(7-8): p. 3161-3168.
65. McQueena, H.J., et al., Solution and precipitation effects on hot workability of 6201 alloy. Materials Science and Engineering: A, 2001. 319-321: p. 420-424.
66. E. Evangelista, et al., Hot formability of AA 6061 PM aluminium alloy. Materials Processing Technology, 1990. 24: p. 323-332.
67. S. Mandal, et al., Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic tainless steel. Materials Science and Engineering: A, 2009. 500(1-2): p. 114-121.
68. R. Kaibyshev, et al., Grain refinement in as-cast 7475 aluminum alloy under hot deformation. Materials Science and Engineering A, 2003. 344: p. 348-356.
69. A. Slipenyuk, et al., Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio. Acta Materialia, 2006. 54(1): p. 157-166.
70. C. Tekmen, et al., The mechanical response of Al–Si–Mg/SiCp composite: influence of porosity. Materials Science and Engineering: A, 2003. 360(1-2): p. 365-371.
71. Hong.Soon H , Chunga.Kyung H , and L.C. H, Effects of hot extrusion parameters on the tensile properties and microstructures of SiCw-2124Al composites. Materials Science and Engineering: A, 1996. 206(2): p. 225-232.
72. A. Borrego, et al., Influence of extrusion temperature on the microstructure and the texture of 6061Al-15vol.% SiC<inf>w</inf> PM composites. J Compos Sci Technol, 2002. 62: p. 732-742.
73. B.F. Luan, , et al., High strength Al–Al2O3p composites: Optimization of extrusion parameters. Materials & Design, 2011. 32(7): p. 3810-3817.
74. A. Bahramia, et al., The effect of Zr on the microstructure and tensile properties of hot-extruded Al–Mg2Si composite. Materials & Design, 2012. 36: p. 323-330.
75. C.H.J. Daviesa, et al., Particle fracture during extrusion of a 6061/alumina composite. Scripta Metallurgica et Materialia, 1995. 32(3): p. 309-314.
76. A.Bahrami, et al., Microstructure and tensile properties of AI-15wt%Mg2Si composite after hot extrusion and heat treatment 8th International Conference on Composite Science and Technology, 2011. 471-472: p. 1171-1176.
77. J.Zhou, A.T.Druzdzel, and J.Duszczyk, The effect of extrusion parameters on the fretting wear resistance of Al-based composites produced via powder metallurgy. Journal of Materials Science, 1999. 34(20): p. 5089-5097.
78. L.M. Them, M. Gupta, and M. Cheng, Effect of reinforced volume fraction on the evolution of reinforced size during the extrusion of Al-SiC composites. Mater. Sci. Eng. A, 1996. 206: p. 225-232.
79. Zhang.Hao and W. J.N., Thixoforming of spray-formed 6066Al/SiCp composites. Composites Science and Technology, 2001. 61(9): p. 1233-1238.
80. Usta, M., The influence of thermal treatment on the cast structure of 6xxx aluminum alloys, in New York. 2001: Rensselaer Polytechnic Institute. p. 37-46.
81. J. Masounave and F.G. Hamel, Fabrication of Particulate Reinforced Metal Composites. 1990, : ASM International.
82. M.T. Kiser, F.W.Z., D.S. Wilkinson, Plastic flow and fracture of a particulate metal matrix composite. Acta Materialia, 1996. 44(9): p. 3465–3476.
83. G.E. Dieter, Mechanical Metallurgy. 1988, London: S.I (metric edn)McGraw-Hill.
84. L.M. Tham, G.M. and Cheng. L Effect of reinforcement volume fraction on the evolution of reinforcement size during the extrusion of Al-SiC composites. Materials Science and Engineering: A, 2002. 326(2): p. 355-363.
85. D. Zhao, F.R. Tuler, and D.J. Lloyd, Fracture at elevated temperatures in a particle reinforced composite. Acta Metallurgica et Materialia, 1994. 42(7): p. 2525–2533.
86. R. Rahmani Fard and F. Akhlaghi, Effect of extrusion temperature on the microstructure and porosity of A356-SiCp composites. Journal of Materials Processing Technology, 2007. 187-188: p. 433-436.
87. Y. Brechet, et al., Damage initiation in metal matrix composites. Acta Metallurgica et Materialia, 1991. 39(8): p. 1781–1786.
88. Y. Brechet, et al., A note on particle comminution at large plastic strains in Al-SiC composites. Scripta Metallurgica et Materialia, 1993. 28(1): p. 47-51.
89. W.H Hunt Jr., J.R Brockenbrough, and P.E. Magnusen, An Al-Si-Mg composite model system: Microstructural effects on deformation and damage evolution. Scripta Metallurgica et Materialia, 1991. 25(1): p. 15-20.
90. Z. Wang, et al., Effect of extrusion and particle volume fraction on the mechanical properties of SiC reinforced Al–Cu alloy composites. Materials Science and Engineering: A, 2010. 527(24-25): p. 6537-6542.
91. H.J. Huang, et al., Influence of Mn addition on microstructure and phase formation of spray-deposited Al–25Si–xFe–yMn alloy. Materials Science and Engineering: A, 2009. 502(1-2): p. 118-125.
92. Y. Cai, et al., Effect of Cr and Mn on the microstructure of spray-formed Al–25Si–5Fe–3Cu alloy. Materials Science and Engineering: A, 2011. 528(12): p. 4248-4254.
93. F.Wang, et al., Effect of Fe and Mn additions on microstructure and mechanical properties of spray-deposited Al–20Si–3Cu–1 Mg alloy. Materials Characterization, 2009. 60(5): p. 384-388.
94. F. Wang, et al., The microstructure and mechanical properties of spray-deposited hypereutectic Al-Si-Fe alloy. Journal of Materials Processing Technology, 2003. 137(1-3): p. 191-194.
95. V.C. Srivastava, R.K. Mandal, and S.N. Ojha, Microstructure and mechanical properties of Al-Si alloys produced by spray forming process. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2001. 304: p. 555-558.
96. F. Wang, et al., Microstructure, mechanical properties, and age-hardening behavior of an Al-Si-Fe-Mn-Cu-Mg alloy produced by spray deposition. Journal of Materials Engineering and Performance, 2011. 20(1): p. 155-159.
97. E.R. Wang, X.D. Hui, and G.L. Chen, Eutectic Al–Si–Cu–Fe–Mn alloys with enhanced mechanical properties at room and elevated temperature. Materials & Design, 2011. 32(8-9): p. 4333-4340.
98. C.F. Ferrarini, et al., Microstructure and mechanical properties of spray deposited hypoeutectic Al–Si alloy. Materials Science and Engineering: A, 2004. 375-377: p. 577-580.
99. D.M. Goudar, et al., Effect of copper and iron on the wear properties of spray formed Al–28Si alloy. Materials & Design, 2013. 51: p. 383-390.
100. N. Belov, D. Eskin, and N. Avxentieva, Constituent phase diagrams of the Al–Cu–Fe–Mg–Ni–Si system and their application to the analysis of aluminium piston alloys. Acta Materialia, 2005. 53(17): p. 4709-4722.
101. A.R. Farkoosh and M. Pekguleryuz, The effects of manganese on the Τ-phase and creep resistance in Al–Si–Cu–Mg–Ni alloys. Materials Science and Engineering: A, 2013. 582: p. 248-256.
102. McQueen, H.J. and N.D. Ryan, Constitutive analysis in hot working. Materials Science and Engineering: A, 2002. 322: p. 43-63.
103. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys. 1981.
104. H. Asgharzadeh, H.S. Kim, and A. Simchi, Microstructure, strengthening mechanisms and hot deformation behavior of an oxide-dispersion strengthened UFG Al6063 alloy. Materials Characterization, 2013. 75: p. 108-114.
105. G.-z. Quan, et al., A characterization for the dynamic recrystallization kinetics of as-extruded 7075 aluminum alloy based on true stress–strain curves. Computational Materials Science, 2012. 55: p. 65-72.
106. T. Sheppard and A. Jackson, Constitutive equations for use in prediction of flow stress during extrusion of alurniniul11alloys, in Microstuctural Development And Stability In High Chromium Ferritic Power Plant Steels, A. Strang and D.J. Gooch, Editors. 1904.
107. C.H. Cáceresa and B.I. Selling, Casting defects and the tensile properties of an Al-Si-Mg alloy. Materials Science and Engineering: A, 1996. 220(1-2): p. 109-116.
108. W.Zhang, et al., Influence of hot-extrusion and aging treatment on properties of SiCw/6061Al composites. Journal of Materials Science Letters, 2001. 20(16): p. 1521-1522.
109. P.M. Mummery, B. Derby, and C.B. Scruby, Acoustic emission from particulate-reinforced metal matrix composites. Acta Metallurgica et Materialia, 1993. 41(5): p. 1431–1445.
110. D.L. Davidson, Effect of particulate SiC on fatigue crack growth in a cast-extruded aluminum alloy composite. Metallurgical transactions. A, Physical metallurgy and materials science, 1991. 22(1): p. 97-112.
111. M. Manoharan and J.J. Lewandowski, Crack initiation and growth toughness of an aluminum metal-matrix composite. Acta Metallurgica et Materialia, 1990. 38(3): p. 489–496.
112. M.J. Tan, et al., Discontinuous reinforcements in extruded aluminium-lithium matrix composites. Journal of Materials Processing Technology, 1993. 37(1-4): p. 391–403.
113. H. Zhang, et al., Hot deformation behavior of the new Al–Mg–Si–Cu aluminum alloy during compression at elevated temperatures. Materials Characterization, 2007. 58(2): p. 168-173.
114. T.Imai, et al., High strain rate superplasticity of TiC particulate reinforced 2014 aluminum alloy composites. Materials Science and Engineering: A, 2004. 364(1-2): p. 281-286.
115. Y.-d. Jia, et al., Hot deformation behavior of spray formed Al-22Si-5Fe-3Cu-1Mg alloy. Transactions of Nonferrous Metals Society of China, 2011. 21: p. s299-s303.
116. P.S. Raghupathi, W.C. Setzer, and M.Baxi, Aluminum and aluminum alloys. Vol. 14. 1998: ASM International. 266.
117. K.Laue and H.Stenger, Extrusion:Processes,Machinery,Tooling. American Society for Metals. 1981.
校內:2019-09-10公開