簡易檢索 / 詳目顯示

研究生: 李三泰
Li, San-Tai
論文名稱: 氧化鋅/碳六十/二氧化矽組成的製備
Fabrication of ZnO/C60/SiO2 Composites
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 37
中文關鍵詞: X-ray碳六十綠光
外文關鍵詞: X-ray, C60, green light
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,ZnO/C60/SiO2被合成出來對於X-ray驅動單態氧產生。在X-ray激發後,氧化鋅釋放的綠光被碳六十吸收,經由能量轉移能夠產生單態氧。此外,我們評估氧化鋅綠光螢光受影響在奈米結構的核或殼,藉著設計兩種不同奈米結構ZnO/C60@mSiO2和C60@mSiO2@ZnO。值得注意的是,C60@mSiO2@ZnO奈米結構顯示較好的綠光放光,透露在X-ray觸發產生單態氧的能力,因此預期是有潛能的奈米藥物去做到光動力治療深層腫瘤。然而,從穿透式電子顯微鏡觀察到材料的聚集,且比氧化鋅較差的螢光強度,在未來進一步改善我們的合成參數。

    In the present work, ZnO/C60/SiO2 was synthesized for demonstrating the X-ray triggered singlet oxygen generation. Upon X-ray excitation, ZnO emits green luminescence which is absorbed by C60 thereby enabling generation of singlet oxygen by energy transfer mechanism. Further, we proceeded to assess the influence of the position of ZnO, either in the core or shell of the nanostructure on the green luminescence by designing two different nanostructures namely ZnO/C60@mSiO2 and C60@mSiO2@ZnO. Notably, the C60@mSiO2@ZnO nanostructure show better green emission revealing the capability to generate singlet oxygen upon X-ray trigger and thus anticipated to be a potential nanomedicine to accomplish photodynamic therapy in deep seated tumor. However, the aggregation of the nanomaterials as observed from TEM and the inferior fluorescence intensity compared only ZnO to poses a challenge to further improve our synthesis parameter in future.

    摘要……………………………………………………………………………I 英文延伸摘要(Extended Abstract) ………………………………………… II 誌謝 …………………………………………………………………………X 目錄………………………………………………………………………… XI 表目錄 ……………………………………………………………………XIII 圖目錄 ……………………………………………………………………XIV 第一章 緒論…………………………………………………………………1 1-1 碳六十簡介……………………………………………………………1 1-2 碳六十之物理和化學性質……………………………………………2 1-3 氧化鋅簡介……………………………………………………………6 1-4 氧化鋅的發光機制……………………………………………………7 1-5 氧化鋅的合成方法……………………………………………………9 第二章 實驗藥品與儀器設備 ……………………………………………12 2-1 實驗藥品 ……………………………………………………………12 2-1-1 合成氧化鋅/碳六十/二氧化矽奈米材料 …………………12 2-2 儀器設備 ……………………………………………………………13 2-2-1材料特性鑑定的儀器分析……………………………………13 第三章 氧化鋅/碳六十/二氧化矽組成的製備與表徵 …………………15 3-1 研究動機與設計概念 ………………………………………………15 3-2 實驗步驟 ……………………………………………………………17 3-2-1 合成碳六十核/二氧化矽殼奈米材料………………………17 3-2-2 合成氧化鋅奈米材料 ………………………………………18 3-2-3 合成碳六十核/介孔二氧化矽殼奈米材料…………………19 3-2-4 合成氧化鋅核/二氧化矽殼奈米材料………………………20 3-2-5 合成氧化鋅核/介孔二氧化矽殼奈米材料…………………21 3-2-6 碳六十核/二氧化矽殼奈米材料表面吸附氧化鋅…………22 3-2-7 碳六十核/介孔二氧化矽殼奈米材料表面吸附氧化鋅……22 3-3 實驗結果與討論……………………………………………………23 3-3-1 氧化鋅在表面修飾上有無孔洞二氧化矽的結構與光學性質探討…………………………………………………………………23 3-3-2碳六十修飾二氧化矽或孔洞二氧化矽的結構探討…………28 3-3-3氧化鋅吸附在碳六十/有無孔洞二氧化矽的結構與光學性質 探討…………………………………………………………………32 第四章 結論 ………………………………………………………………34 參考文獻……………………………………………………………………35

    1. Rohlfing, E. A.; Cox, D. M.; Kaldor, A. Production and characterization of supersonic carbon cluster beams. J. Chem. Phys. 1984, 81 (7), 3322-3330.
    2. Kroto, H.W.; Heath, J. R.; O’Brein, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene.Nature 1985, 318, 162-163.
    3. lijima, S. Helical microtubules of graphitic carbon. Nature 1911, 354, 56-58.
    4.Yadav, B. C.; Kumar, R. Structure, properties and applications of fullerenes.
    Int J Nanotechnol Appl. 2008, 2 (1), 15-24.
    5.Kato, H.; Nakamura, A.; Takahashi, K.; Kinugasa, S. Size effect on UV-Vis absorption properties of colloidal C60 particles in water. Phys. Chem. Chem. Phys. 2009, 11, 4946-4948.
    6. Torres, V. M.; Posa, M.; Srdjenovic, B.; Simplicio, A. L. Solubilization of
    fullerene C60 in micellar solutions of different solubilizers.Colloids Surf. B: Biointerface. 2011, 82, 46-53.
    7. Arbogast, J. W.; Darmanyan, A. P.; Foote, C. S.; Rubin, Y.; Diederich, F. N.; Alvarez, M. M.; Anz, S. J.; Whetten, R. L. Photophysical Properties of C60. J. Phys. Chem. 1991, 95, 11-12.
    8. Trinh, C.; Kirlikovali, K. O.; Bartynski, A. N.; Tassone, C. J.; Toney, M. F.;
    Burkhard, G. F.; McGehee, M. D.; Djurovich, P. I.; Thompson, M. E.
    Efficient Energy Sensitization of C60 and Application to Organic
    Photovoltaics. J. Am. Chem. Soc. 2013, 135 (32), 11920-11928.
    9. Markovic. Z.; Trajkovic. V. Biomedical potential of the reactive oxygen
    species generation and quenching by fullerenes (C60).Biomaterials 2008,
    29, 3561-3573.
    10. Sekiguchi, T.; Ohashi, N.; Terada, Y.Effect of Hydrogenation on ZnO
    Luminescence. Jpn. J. Appl. Phys. 1997, 36, 289-291.
    11. Wang, Z. L.Zinc oxide nanostructures: growth, properties and applications.
    J. Phys.: Condens. Matter. 2004, 16 (25), 829-858.
    12.Zhang, X. T.; Liu, Y. C.; Zhi, Z. Z.; Zhang, J. Y.; Lu, Y. M.; Shen, D. Z.;
    Xu, W.; Fan, X. W.; Kong, X. G. Temperature dependence of excitonic
    luminescence from nanocrystalline ZnO films.Luminescence 2002, 99,
    149-154.
    13.Vanheusden, K.; Warren, W. L.; Seager, C. H.; Tallant, D. R.; Voigt, J. A.;
    Gnade, B. E. Mechanisms behind green photoluminescence in ZnO
    phosphor powders. J. Appl. Phys.1996, 79 (10), 7983-7990.
    14. Li, W.; Mao, D.; Zhang, F.; Wang, X.; Liu, X.; Zou, S.; Zhu, Y.; Li, Q.; Xu,
    J.Characteristics of ZnO:Zn phosphor thin films by post-deposition
    annealing. Nucl. Instr. Meth. B 2000, 169, 59-63.
    15. Lin, B.; Fu, Z.; Jia, Y.Green luminescent center in undoped zinc oxide
    films deposited on silicon substrates. Appl. Phys. Lett. 2001, 79, 943-945.
    16.Bahnemann, D. W.; Kormann, C.; Hoffmann, M. R. Preparation and
    Characterization of Quantum Size Zinc Oxide: A Detailed Spectroscopic
    Study. J. Phys. Chem. 1987, 91, 3789-3798.
    17.Xiong, H. M.; Liu, D. P.; Xia, Y. Y.; Chen, J. S. Polyether-grafted ZnO
    nanoparticles with tunable and stable photoluminescence at room
    temperature. Chem. Mater. 2005, 17 (12), 3062-3064.
    18.Zhang, C.; Zhao, K.; Bu, W.; Ni, D.; Liu, Y.; Feng, J.; Shi J. Marriage of
    Scintillator and Semiconductor for Synchronous Radiotherapy and Deep
    Photodynamic Therapy with Diminished Oxygen Dependence. Angew.
    Chem. Int. Ed. 2015, 54, 1770-1774.
    19.Chen, H.; Wang, G. D.; Chuang, Y. J.; Zhen Z.; Chen, X.; Biddinger, P.;
    Hao, Z.; Liu, F.; Shen, B.; Pan, Z.; Xie, J. Nanoscintillator-Mediated X‑ray
    Inducible Photodynamic Therapy for In Vivo Cancer Treatment.Nano Lett.
    2015, 15, 2249-2256.
    20.Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.;
    Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan,
    T. E.; Selim, F. A.ZnO Luminescence and scintillation studied via
    photoexcitation, X-ray excitation, and gamma-induced positron
    spectroscopy. Scientific Reports 2016, 6, 31238.
    21. Wang, H.; Agarwal, P.; Zhao, S.; Yu, J.; Lu, X.; He, X.Combined cancer
    therapy with hyaluronan-decorated fullerene-silica multifunctional
    nanoparticles to target cancer stem-like cells.Biomaterials 2016, 97, 62-
    73.
    22. Jia, Z.; Meng, L.; HanBin, L. MAA-modified and luminescence properties
    of ZnO quantum dots. Sci. China Ser. B-Chem 2009, 52, 2125-2133.
    23. Fan, W.; Lu, N.; Huang, P.; Liu, Y.; Yang, Z.; Wang, S.; Yu, G.; Liu, Y.;
    Hu, J.; He, Q.; Qu, J.; Wang, T.; Chen, X.Glucose-Responsive Sequential
    Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer
    Starving-Like/Gas Therapy.Angew. Chem. Int. Ed. 2017, 56, 1229-1233.

    無法下載圖示 校內:2023-08-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE