| 研究生: |
李三泰 Li, San-Tai |
|---|---|
| 論文名稱: |
氧化鋅/碳六十/二氧化矽組成的製備 Fabrication of ZnO/C60/SiO2 Composites |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | X-ray 、碳六十 、綠光 |
| 外文關鍵詞: | X-ray, C60, green light |
| 相關次數: | 點閱:50 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中,ZnO/C60/SiO2被合成出來對於X-ray驅動單態氧產生。在X-ray激發後,氧化鋅釋放的綠光被碳六十吸收,經由能量轉移能夠產生單態氧。此外,我們評估氧化鋅綠光螢光受影響在奈米結構的核或殼,藉著設計兩種不同奈米結構ZnO/C60@mSiO2和C60@mSiO2@ZnO。值得注意的是,C60@mSiO2@ZnO奈米結構顯示較好的綠光放光,透露在X-ray觸發產生單態氧的能力,因此預期是有潛能的奈米藥物去做到光動力治療深層腫瘤。然而,從穿透式電子顯微鏡觀察到材料的聚集,且比氧化鋅較差的螢光強度,在未來進一步改善我們的合成參數。
In the present work, ZnO/C60/SiO2 was synthesized for demonstrating the X-ray triggered singlet oxygen generation. Upon X-ray excitation, ZnO emits green luminescence which is absorbed by C60 thereby enabling generation of singlet oxygen by energy transfer mechanism. Further, we proceeded to assess the influence of the position of ZnO, either in the core or shell of the nanostructure on the green luminescence by designing two different nanostructures namely ZnO/C60@mSiO2 and C60@mSiO2@ZnO. Notably, the C60@mSiO2@ZnO nanostructure show better green emission revealing the capability to generate singlet oxygen upon X-ray trigger and thus anticipated to be a potential nanomedicine to accomplish photodynamic therapy in deep seated tumor. However, the aggregation of the nanomaterials as observed from TEM and the inferior fluorescence intensity compared only ZnO to poses a challenge to further improve our synthesis parameter in future.
1. Rohlfing, E. A.; Cox, D. M.; Kaldor, A. Production and characterization of supersonic carbon cluster beams. J. Chem. Phys. 1984, 81 (7), 3322-3330.
2. Kroto, H.W.; Heath, J. R.; O’Brein, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene.Nature 1985, 318, 162-163.
3. lijima, S. Helical microtubules of graphitic carbon. Nature 1911, 354, 56-58.
4.Yadav, B. C.; Kumar, R. Structure, properties and applications of fullerenes.
Int J Nanotechnol Appl. 2008, 2 (1), 15-24.
5.Kato, H.; Nakamura, A.; Takahashi, K.; Kinugasa, S. Size effect on UV-Vis absorption properties of colloidal C60 particles in water. Phys. Chem. Chem. Phys. 2009, 11, 4946-4948.
6. Torres, V. M.; Posa, M.; Srdjenovic, B.; Simplicio, A. L. Solubilization of
fullerene C60 in micellar solutions of different solubilizers.Colloids Surf. B: Biointerface. 2011, 82, 46-53.
7. Arbogast, J. W.; Darmanyan, A. P.; Foote, C. S.; Rubin, Y.; Diederich, F. N.; Alvarez, M. M.; Anz, S. J.; Whetten, R. L. Photophysical Properties of C60. J. Phys. Chem. 1991, 95, 11-12.
8. Trinh, C.; Kirlikovali, K. O.; Bartynski, A. N.; Tassone, C. J.; Toney, M. F.;
Burkhard, G. F.; McGehee, M. D.; Djurovich, P. I.; Thompson, M. E.
Efficient Energy Sensitization of C60 and Application to Organic
Photovoltaics. J. Am. Chem. Soc. 2013, 135 (32), 11920-11928.
9. Markovic. Z.; Trajkovic. V. Biomedical potential of the reactive oxygen
species generation and quenching by fullerenes (C60).Biomaterials 2008,
29, 3561-3573.
10. Sekiguchi, T.; Ohashi, N.; Terada, Y.Effect of Hydrogenation on ZnO
Luminescence. Jpn. J. Appl. Phys. 1997, 36, 289-291.
11. Wang, Z. L.Zinc oxide nanostructures: growth, properties and applications.
J. Phys.: Condens. Matter. 2004, 16 (25), 829-858.
12.Zhang, X. T.; Liu, Y. C.; Zhi, Z. Z.; Zhang, J. Y.; Lu, Y. M.; Shen, D. Z.;
Xu, W.; Fan, X. W.; Kong, X. G. Temperature dependence of excitonic
luminescence from nanocrystalline ZnO films.Luminescence 2002, 99,
149-154.
13.Vanheusden, K.; Warren, W. L.; Seager, C. H.; Tallant, D. R.; Voigt, J. A.;
Gnade, B. E. Mechanisms behind green photoluminescence in ZnO
phosphor powders. J. Appl. Phys.1996, 79 (10), 7983-7990.
14. Li, W.; Mao, D.; Zhang, F.; Wang, X.; Liu, X.; Zou, S.; Zhu, Y.; Li, Q.; Xu,
J.Characteristics of ZnO:Zn phosphor thin films by post-deposition
annealing. Nucl. Instr. Meth. B 2000, 169, 59-63.
15. Lin, B.; Fu, Z.; Jia, Y.Green luminescent center in undoped zinc oxide
films deposited on silicon substrates. Appl. Phys. Lett. 2001, 79, 943-945.
16.Bahnemann, D. W.; Kormann, C.; Hoffmann, M. R. Preparation and
Characterization of Quantum Size Zinc Oxide: A Detailed Spectroscopic
Study. J. Phys. Chem. 1987, 91, 3789-3798.
17.Xiong, H. M.; Liu, D. P.; Xia, Y. Y.; Chen, J. S. Polyether-grafted ZnO
nanoparticles with tunable and stable photoluminescence at room
temperature. Chem. Mater. 2005, 17 (12), 3062-3064.
18.Zhang, C.; Zhao, K.; Bu, W.; Ni, D.; Liu, Y.; Feng, J.; Shi J. Marriage of
Scintillator and Semiconductor for Synchronous Radiotherapy and Deep
Photodynamic Therapy with Diminished Oxygen Dependence. Angew.
Chem. Int. Ed. 2015, 54, 1770-1774.
19.Chen, H.; Wang, G. D.; Chuang, Y. J.; Zhen Z.; Chen, X.; Biddinger, P.;
Hao, Z.; Liu, F.; Shen, B.; Pan, Z.; Xie, J. Nanoscintillator-Mediated X‑ray
Inducible Photodynamic Therapy for In Vivo Cancer Treatment.Nano Lett.
2015, 15, 2249-2256.
20.Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.;
Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan,
T. E.; Selim, F. A.ZnO Luminescence and scintillation studied via
photoexcitation, X-ray excitation, and gamma-induced positron
spectroscopy. Scientific Reports 2016, 6, 31238.
21. Wang, H.; Agarwal, P.; Zhao, S.; Yu, J.; Lu, X.; He, X.Combined cancer
therapy with hyaluronan-decorated fullerene-silica multifunctional
nanoparticles to target cancer stem-like cells.Biomaterials 2016, 97, 62-
73.
22. Jia, Z.; Meng, L.; HanBin, L. MAA-modified and luminescence properties
of ZnO quantum dots. Sci. China Ser. B-Chem 2009, 52, 2125-2133.
23. Fan, W.; Lu, N.; Huang, P.; Liu, Y.; Yang, Z.; Wang, S.; Yu, G.; Liu, Y.;
Hu, J.; He, Q.; Qu, J.; Wang, T.; Chen, X.Glucose-Responsive Sequential
Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer
Starving-Like/Gas Therapy.Angew. Chem. Int. Ed. 2017, 56, 1229-1233.
校內:2023-08-10公開