簡易檢索 / 詳目顯示

研究生: 莊啟佑
Chuang, Chi-Yu
論文名稱: 靜電式活性生物氣膠採樣系統設計研究
Development of Electrostatic Sampling Systems for Monitoring Viable Bioaerosols
指導教授: 蘇慧貞
Su, Huey-Jen
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 67
中文關鍵詞: 生物氣膠監測靜電集塵
外文關鍵詞: bioaerosol, electrostatic precipitation, monitoring
相關次數: 點閱:67下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物氣膠長久以來為威脅人類健康之要角,晚近以來更因人類活動高密度化與全球化而更具憂慮。傳統針對生物氣膠微粒之採樣分析方法均有限制,難以兼顧均等、快速、標準化、長期監測等需求。本研究針對此挑戰研製一以靜電集塵為原理之生物氣膠收集系統Electrostatic Sampling System,利用其微粒充電以及反相電位原理進行捕集。此一收集系統於暴露艙環境中利用Bacillus subtilis作為施放微粒進行捕集測試,以採樣流速2LPM,捕集電壓3000V,微粒充電10V之設定,可達物理捕集效率約70%,生物回收效率約為55%。以Staphylococcus aureaus測試之生物回收效率約為44%,而以Escherichia coli測試之結果為35%,Pseudomonas fluorescene測試結果約為23%。此結果顯示本採樣系統對於生物微粒於採樣過程中,所造成之活性傷害較小。本研究同時亦於實驗室內完成針對B.subtilis菌株之PCR檢測所須之各種引子及設定。於現場環境進行初步實測,以此一收集系統捕集空氣中之生物氣膠微粒確實可行,且能運作長達12 小時。

    Exposure to bioaerosols has been implicated in the occurrence of many diseases. The increasing population density and globalization of human migration has enhanced the threat of contacting to infectious agents. From the standpoint of public health, an environmental monitoring system that can adequately and efficiently indicate the potential hazards imposed by airborne microorganism is therefore most desired. Conventional monitoring and analytical approaches at the moment can’t fulfill the need for rapid detection, standardized and long-term sampling. A new bioaerosol sampler was designed based on the theory of electrostatic precipitation, named as Electrostatic Sampling system (ESS). The ESS is capable of charging the particle with copper charging array plate and collecting charged particle by positive electrical field onto two square agar plates positioned in the follow axis. When studying with Bacillus subtilis bacterial vegetative cell, the ESS bioaerosol captured the particles with physical collection efficiency close to 70% and the relative recovery efficiency close to 55% at flow rate 2LPM, precipitating voltage of 3,000V and chare voltage of 10V. The recovery efficiency was 44%, 35% and 23% when testing with Staphylococcus aureaus, Escherichia coli and Pseudomonas fluorescene, respectively. The rapid PCR detection also has been designed and studied with liquefied suspension of studied bacteria. Preliminary field was performed to evaluate the feasibility of applying this ESS equipment to collect bioaerosols in other environmental sampling setting.

    Abstract IV 摘 要 V Content VIII List of Tables X List of Figures XI 1. Introduction 1 1.1. Bioaerosols 1 1.2. Assessment of Bioaerosols Exposures 1 1.2.1. Impactor 3 1.2.2. Impinger 5 1.2.3. Filtration 6 1.3. Electrostatic precipitation 7 1.3.1. Electric charge on microorganism 7 1.3.2. Electrostatic precipitator 8 2. Objective 14 3. Material and Methods 15 3.1. The Sampling system of monitoring viable bioaerosols 15 3.2. Experimental setup 16 3.3. Test particles 17 3.4. Experimental Procedures 19 3.4.1. Sampling setting 19 3.4.2. Selection of collection medium 20 3.4.3. Sampling operation and quality assurance 21 3.4.4. Collection efficiency evaluation 22 3.4.5. Polymerase chain reaction 24 4. Result and Discussion 27 4.1. ESS precipitator 27 4.1.1. Inlet profile designing 27 4.1.1.1. Computer-based flow field simulation of inlet section 29 4.1.2. The fabrication of ESS precipitator 31 4.1.3. The Particle image Velocimetry test of precipitation section 33 4.2. Chamber stability 34 4.3. Physical collection efficiency 37 4.4. Biological relative recovery 45 4.5. PCR analysis 49 4.6. Initially field testing. 50 5. Conclusion 51 6. Reference 52 Appendix.1 Commercially and frequently used bioaerosols air sampling device 60 Appendix.2 Biological Exposure Chamber 64 Appendix.3 The size of bioaerosols 66

    ACGIH(1999).Bioaerosol:Assessment and Control. American Conference of Governmental Industrial Hygienists
    Agranovski I.E., Safatov A.S., Borodulin A.I., Pyankov O.V., Petrishchenko V.A., Sergeev A.A., Agranovski V., Grinshpun S.A.(2005) New personal sampler for viable airborne viruses: feasibility study. Aerosol Science36:609-617.
    Aizenberg V., Reponen T., Grinshpun S.A (2000). Performance of the Air-O-Cell, Burkard, and Button samplers for total enumeration of airborne spores. American Industrial Hygiene Association Journal. 661, 855-64.
    Alvarez A. J., Buttner M. P., Stetzenbach L. D. (1995) PCR for bioaerosol monitoring sensitivity and envitonmental interference. Applied and Environmental Microbiology. 61 (10) 3639-44.
    Alwis U., Mandyrk J., Hocking A. D., Lee J., Mayhew T., Barker W. (1999) Dust exposure in the wood processing industry. American Industrial Hygiene Association Journal. 60(5):641-6.
    An H.R., Mainelis G., Yao M. (2004). Evaluation of a high-volume portable bioaerosol sampler in laboratory and field environments. Indoor Air. 14:385-93.
    Bellin P., Schillinger J. (2001). Comparsion of field performance of the Anderson N6 single stage and the SAS sampler for airborne fungal propagates. Indoor Air. 11:65-8.
    Boelter K., Davidson J. H. (1997) Ozone generation by indoor, electrostatic air cleaners. Aerosol Science and Technology. 27:689-708.
    Brown K. (2004) Up in the air. Science 305:1228-29
    Buttner M. P., Willeke K., Grinshpun S. (1993) Sampling and analysis of airborne microorganism. In Manual of Environmental Microbiology. ASM press.
    Buttner M. P., Cruz-Perez P., Stetzenbach L.D. (2001). Enhanced detection of surface-associated bacteria in indoor environments by quantitative PCR. Applied and Environmental Microbiology. 67(6):2564-70.
    Buttner M. P., Willeke K., Grinshoun S. Sampling and analysis if airborne microorganism. (2002) In Manual of Environmental Microbiology. 2nd edtition. Washington DC.
    Chang C. W., Chung H., Huang C. F., & Su H. J. J. (2001). Exposure of workers to airborne microorganisms in open-air swine houses. Applied and Environmental Microbiology. 67, 155–161.
    Chapin A., Rule A., Gibson K., Buckley T., Schwab K. (2005) Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation. Environmental Health Perspective. 113(2):137-42
    Cox C. S. (1987) The aerobiological pathway ofmicroorganism. Wiley Interscience, England.
    Cox C.S., Wathes C.M. (1995) Bioaerosols handbook. New York: Lewis Publishers.
    Douwes J., Thorne P., Pearce N., Heederik, D.(2003). Bioaerosol health effects and exposure assessment: Progress and prospects. The Annuals of Occupational Hygiene. 47, 187–200.
    Decker H. M., Buchnan L.M., Frisque D.E. (1969) Advance in Large Volume Air Sampling. Contamination Control. 8:13-20.
    Durand K. T. H., Muilenberg M.L., Burge H.A., Seixas N.S. (2002) Effect of sampling time on the culturability of airborne fungi and bacteria sampled by filtration. Annual of Occupational Hygiene. 46(1):113-8.
    Fung F., Hungson W.G. (2003) Health effects of indoor fungal bioaerosl exposure. Applied Occupational and Environmental Hygiene.18(7):535-44.
    Gast R. K., Mitchell B.W., Holt P.S (2004) Detection of airborne samonella ebteritiids in the environment of experimentally infected laying hens by an electrostatic sampling device. Avian Diseases. 48:148-54.
    Gerone P. J., Couch R. B., Keefer G. V., Douglas R. G., Derrenbacher E. E., Knight V. (1966) Assessment of experimental and natural viral aerosols. Bacteriological Reviews 30:576-88.
    Grinshpun S. A., Adhikari A., Lee, B. U., Trunov M., Mainelis G., Yermakov, M., & Reponen T. (2004). Indoor air pollution control through ionization.
    Hawley R. J., Eitzen Jr. E. M. (2001) Biologial weapon-A primer. Annual Review of Microbiology. 55:235-53.
    Horn D. J. (2005) Comparison of air samplers for environmental monirtoring regarding IOS 14698. Biotest Newsletter.
    Inglesby T.V., O’Toole T., Handerson D. A., Bartlett J. G., Ascher M.S., Eitzen E., Friedlander A. M., Gerberding J., Hauer J., Hughes J., McDade J., Osterholm M. T., Parker G., Perl T. M., Russell P. K., Tonat K. (2002). Anthrax as a biological weapon. Journal of American Medical Association. 287, 17
    Iqbal S.S., Mayo M. W., Bruno J. G., Bronk B. V., Batt C. A., Chambers J. P.(2000) A review of molecular recognition technologies for detection of biological threar agents. Biosensors & Bioelectronics. 15:549-78.
    Jensen P. A., Todd W. F., Davis G. N., & Scarpino P. V. (1992). Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria. American Industrial Hygiene Association Journal. 53, 660–667.
    Jenson P. A., Schafer M.P. (1995). Sampling and characteristication of Bioaerosols. NIOSH Manual of Analytic Methods.82-112
    Lee S., Willeke K., Mainelis G., Adhikari A., Wang H., Reponen T., Grinshpun S.A.(2004). Assessment of electrical charge on airborne microorganisms by a new bioaerosol sampling method. Journal of Occupational and Environmental Hygiene. 1:127-38.
    Lee K. S., Teschke K., Brauer M., Bartlett K. H. (2004) A field comparsion of four fungal aerosol sampling instruments : inter-sampler calibrations and caveats. Indoor Air. 14 :367-72.
    Lee K. S., Bartlett K. H, Teschke K., Brauer M., Stephens G. M., Black W.A. (2004) A field comparsion of four samples for enumerating fingal aerosols I. Sampling characteristics. Indoor Air. 14 :360-66.
    Leung M., Chan A.H.S. (2006). Control and managing of hospital indoor air quality. . Medical Science Monotoring. 12(3) :17-23.
    Li, C. H. & Lin, Y. C. (1999).Sampling performance of impactors for bacterial bioaerosols. Aerosol Science and Technology. 30, 280–287.
    Lin X, Reponen T., Willeke K., Wang Z., Grinshpum S.A. Trunov M. (2000) Surival of airborne microorganisms during swiring aerosol collection. Aerosol Science and Technology. 32:184-96.
    Lin X, Willeke K., Ulevicius V., Grinshpun S. A. (1997) Effect of sampling time on the collection efficiency of all-glass impinger. American Industrial Hygiene Association Journal. 58:480-8
    Lim D. V., Simpson J. M., Kearns E .A., Kramer M. F. (2005) Current and developing technologies for monitoring agents of bioterrorism and bioware. Clinical Microbiology Reviw. 18,4, 583-607
    Macher J.M. (1997). Evaluation of Bioaerosol Sampler Performance. Applied Occupational Environmental Hygiene. 12(11).
    Macher J.M. (1997). Bioaerosol Sampler.Applied Occupational Environmental Hygiene. 12(11).
    MacNeil L., Kauri T., et al. (1995). “Molecular techniques and their potential application in monitoring the microbiological quality of indoor air.” Canadian Journal of Microbiology. 41.
    Mainelis G., Grinshpun S.A., Willeke K., Reponen T., Ulevicius V., Hintz P.J.( 1999). Collection of airborne microorganisms by electrostatic precipitation. Aerosol Science and Technology. 30:127-44.
    Mainelis G., Willeke K., Baron P., Reponen T., Grinshpun S.A., Górny R. L. Trakumas S. (2001) Electrical charges on airborne microorganism. Aerosol Science. 1087-1110.
    Mainelis G., Willeke K., Adhikari A., Reponen T., Grinshpun S.A., (2002a). Design and collection efficiency of a new electrostatic precipitator for bioaerosol collection. Aerosol Science and Technology. 36:1073-8.
    Mainelis G., Willeke K., Adhikari A., S.A. Lee, Reponen T., Grinshpun S.A. (2002b) Collection of airborne microorganisms by a new electrostatic precipitator. Journal of Aerosol Science.33:1417-32.
    Mainelis G., Masquelier Don., Makarewicz A., Dzenitis J. (2005) Perfoemance characteristics of the aerosol collectors of the autonomous pathogen detection system (APDS). Aerosol Science and Technology 39:461-41.
    McBridge M. T., Masquelier D., Hindson B. J., Makarewicz A J., Brown S., Burris K., Metz T., Langlois R. G., Tsang K. W., Bryan R., Anderson D. A., Venkateswaran K.S., Milanovich F. P., Colston B.W. Jr. (2003). Autonomous Detection of Aerosolized Bacillus anthracis and Yersinia pestis. Analytical Chemistry. 5293-99.
    Moris G., Kokki M. H., Richardson M. D. (2000). Sampling of Aspersgillus spores in air. Journal of Hospital Infection. 44:81-92.
    Muilenberg M. L. (2003). Sampling device. Immunology and Allergy Clinics of North American. 337-55.
    Neidhardt F. C., Ingraham J. L., & Schaechter, M. (1990). Physiology of the bacterial cell: A molecular approach. Sunderland: Sinauer Associates, Inc.
    Pasanen A. L. (2001) A review: fungal exposure assessment in indoor environments. Indoor Air. 11:87-98.
    Predicala B.Z., Urban J.E., Maghirang R.G., Jerez S.B., Goodband R.D. Assessment of bioaerosols in swine barns by filtration and impaction. Current Microbiology. 44:136-40.
    Radstrom P.., Knutsson R. Wolffs P., Lovenklev M., Lofstrom C. (2004) Pre-PCR procressing: strategies to generate PCR-compatible sample. Molecular Biotechnology. 26:133-146.
    Rothman R.E., Majmudar M.D., Kelen G.D., Madico G., Gaydos C.A., Walker T., Quinn T.C. (2002) Detection of bacteremia in emergency department patients at risk for infective endocarditis using universal 16S rRNA primers in a decontaminated polymerase chain reaction assay. Journal of Infectious Disease 186(11):1677-81.
    Shaffer B. T., Lighthart B. (1997) Survey of culturable airborne bacteria at four diverse locations in Oregon: urban, rural, forest, and coastal. Microbial Ecology. 34(3):167-77.
    Shelton B. G., Kirkland K. H., Flanders W. D., Morris G. K. (2002) Progiles of airborne fungi in buildings and outdoor environments in the United Stated. Applied and Environmental Microbiology. 68, 1743-53.
    Smid T., Schokkin E., Boleis JSM., Heederik D. Enumeration of viable fungi in occupational environments: a comparison of samplers and media. (1989) American Industrial Hygiene Association Journal. 50(5):235-9.
    Sneath P.H.A. (1986). Endospore-forming Gram-Positive Rods and Cocci. In Bergey’s Manual of Systematic Bacteriology. Vol.2
    Stetzenbach L. D., Buttner M.P., Curz P. (2004) Detection and enumeration of airborne biocontamonants. Current Opinion in Biotechnology. 15:170-74.
    Stratis-Cullum D. N., Griffon G. D., Mobley J., Vass A. A., Vo-Dinh T. A (2003) Miniature biochip system for detection of aerosolized Bacillus globigii spores. Analytical Chemistry. 75:275-80.
    Stewart S., Grinshpun S.A., Willeke K., Terzieva S., Ulevicius V., Donnelly J. (1995). Effect of impaction stress on microbial recovery on an agar surface. Applied and Environmental Microbiology.61:1232-3.
    Su H. J., Wu P. C.., Chen H. L., Lee F. C., and Lin L. L. Exposure Assessment of indoor allergens, endotoxin, and airborne fungi for homes in southern Taiwan. Environmental Research 2001 85; 135-144.
    Terzieva S., Donnelly J., Ulevicius V., Grinshpun S. A., Willeke K., Stelma G. N., Brenner K.P. (1996) Comparison of methods for detection and enumeration of airborne microorganisms collected by liquid impingement. Applied and Environmental Microbiology. 62(7):2264-72.
    USEPA (2002). Guidance on choosing a sampling design for environmental data collection: for use in developing a quality assurance project plan. Washington, D.C.,U.S. Environmental Protection Agency.
    Verhoeff A. P., van Wijnen J.H., et al. (1990). Enumeration and identification of airborne viable mould propagules in houses. A field comparison of selected techniques. Allergy. 45 (4):275-8.
    Yao M., Mainelis G., An H. R. (2005). Inactivation of microorganisms using electrostatic fields. Environmental Science and Technology. 39, 3338–3344.
    Yao M., Mainelis G.(2006). Utilization of natural electrical charges on airborne microorganisms for their collection by electrostatics means. Journa l of Aerosol Science. 37 :513-27.
    Zhou G., Whong W.Z., (2000). Development of a fungus-specific PCR assay for detecting low-level fungi in an indoor environment. Molecular & Cellular Probes. 14(6):339-48.

    下載圖示 校內:立即公開
    校外:2007-01-31公開
    QR CODE