| 研究生: |
林伯彥 Lin, Po-Yen |
|---|---|
| 論文名稱: |
利用混合式金屬奈米孔洞調節光學透鏡相位 Using hybrid of nanoapertures to alter transmitted phase of lens |
| 指導教授: |
張晉愷
Chang, Chin-Kai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 電漿子 、超穎透鏡 、相位補償 |
| 外文關鍵詞: | Plasmonic, Metalens, Phase-compensation |
| 相關次數: | 點閱:59 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統上的金屬電漿子透鏡由於製程上與幾何尺寸上的限制,限制了透鏡上的相位控制 (小於0.5π),無法有效的操控光學相位來達成聚焦元件的最佳化,所以本論文提出了一種金屬平面透鏡的聚焦元件,由圓形孔洞和同心圓孔洞組成。由於低深寬比的圓形孔洞僅能提供較低相位補償,因此我們設計另一種同心圓孔洞來提供另一個相位補償,圓形孔洞和同心圓孔洞在入射光的照射下可以產生局部和圓柱形表面電漿子。
這兩種模態在波導中的傳遞相位與孔徑幾何形狀有關,我們將這些孔徑設計為具有0到π的人工相位,利用雙曲相位公式,將圓形與同心圓孔置入在同心圓陣列中的不同位置,進而操控透鏡的波前。焦距與焦點大小隨著電漿子透鏡上的結構分布,可以適當地控制相位來得到小焦點尺寸 (入射波長的一半)。
我們還透過實驗證明了這種電漿子透鏡的聚焦特性,以驗證我們的設計,由於圓形和同心圓孔徑的圓形對稱性,這種類型的電漿子透鏡同時具有成為偏振不敏感器件的潛力。
關鍵字:電漿子,超穎透鏡,相位補償
An unconventional plasmonic lens which are both constructed by circular and annular apertures in the silver film is proposed to be a focusing device. The circular and annular apertures can induce localized and cylindrical surface plasmon modes with the incident light, respectively. Their propagation phase in the waveguide is related to aperture geometries. We design these apertures to have the artificial phase from zero to Pi and arrange the apertures in concentric arrays to manipulate the wavefront of lens. The focal length and size of focal spot are accompanied by the phase distribution on the plasmonic lens. The small focal spot size (half of wavelength) can be obtained by the proper manipulation of phase. We also demonstrate the focusing properties of this plasmonic lens experimentally to validate our design. Owing to the circular symmetry of circular and annular apertures, this type of plasmonic lens have a great potential to be a polarization-insensitive device.
KEYWORDS: Plasmonic, Metalens, Phase-compensation.
[1] Z. W. Liu et al., “Focusing surface plasmons with a plasmonic lens,” Nano Letters, vol. 5, no. 9, pp. 1726-1729, Sep, 2005.
[2] Y. Q. Fu, X. L. Zhou, and S. L. Zhu, “Ultra-Enhanced Lasing Effect of Plasmonic Lens Structured with Elliptical Nanopinholes Distributed in Variant Periods,” Plasmonics, vol. 5, no. 2, pp. 111-116, Jun, 2010.
[3] E. Mollick, “Establishing Moore's law,” Ieee Annals of the History of Computing, vol. 28, no. 3, pp. 62-75, Jul-Sep, 2006.
[4] Q. Zhang et al., “Generation of vector beams using spatial variation nanoslits with linearly polarized light illumination,” Optics Express, vol. 26, no. 18, pp. 24144-24153, Sep 3, 2018.
[5] Z. Yao, and Y. H. Chen, “Focusing and imaging of a polarization-controlled bifocal metalens,” Optics Express, vol. 29, no. 3, pp. 3904-3914, Feb 1, 2021.
[6] Z. P. Zhuang et al., “High focusing efficiency in subdiffraction focusing metalens,” Nanophotonics, vol. 8, no. 7, pp. 1279-1289, Jul, 2019.
[7] S. M. Wang et al., “A broadband achromatic metalens in the visible,” Nature Nanotechnology, vol. 13, no. 3, pp. 227-232, Mar, 2018.
[8] P. Genevet et al., “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica, vol. 4, no. 1, pp. 139-152, Jan 20, 2017.
[9] F. Aieta et al., “Aberrations of flat lenses and aplanatic metasurfaces,” Optics Express, vol. 21, no. 25, pp. 31530-31539, Dec 16, 2013.
[10] F. Aieta et al., “Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces,” Nano Letters, vol. 12, no. 9, pp. 4932-4936, Sep, 2012.
[11] M. Khorasaninejad et al., “Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,” Nano Letters, vol. 17, no. 3, pp. 1819-1824, Mar, 2017.
[12] V. Liu, and S. H. Fan, “S-4: A free electromagnetic solver for layered periodic structures,” Computer Physics Communications, vol. 183, no. 10, pp. 2233-2244, Oct, 2012.
[13] A. Arbabi et al., “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nature Nanotechnology, vol. 10, no. 11, pp. 937-U190, Nov, 2015.
[14] R. Paniagua-Dominguez et al., “A Metalens with a Near-Unity Numerical Aperture,” Nano Letters, vol. 18, no. 3, pp. 2124-2132, Mar, 2018.
[15] H. W. Liang et al., “Ultrahigh Numerical Aperture Metalens at Visible Wavelengths,” Nano Letters, vol. 18, no. 7, pp. 4460-4466, Jul, 2018.
[16] A. Arbabi et al., “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nature Communications, vol. 6, May, 2015.
[17] L. X. Liu et al., “Color polarization multiplexing metalens based on cross nanoholes,” Optics Communications, vol. 442, pp. 27-30, Jul 1, 2019.
[18] X. Z. Chen et al., “Longitudinal Multifoci Metalens for Circularly Polarized Light,” Advanced Optical Materials, vol. 3, no. 9, pp. 1201-1206, Sep, 2015.
[19] F. Balli et al., “An ultrabroadband 3D achromatic metalens,” Nanophotonics, vol. 10, no. 4, pp. 1259-1264, Apr, 2021.
[20] Y. S. Han et al., “Multi-wavelength focusing based on nanoholes,” New Journal of Physics, vol. 22, no. 7, Jul, 2020.
[21] F. Aieta et al., “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science, vol. 347, no. 6228, pp. 1342-1345, Mar 20, 2015.
[22] E. Arbabi et al., “Multiwavelength metasurfaces through spatial multiplexing,” Scientific Reports, vol. 6, Sep 6, 2016.
[23] A. I. Ladino et al., “Large depth of focus plasmonic metalenses based on Fresnel biprism,” Aip Advances, vol. 10, no. 4, Apr 1, 2020.
[24] J. T. Hu et al., “Plasmonic Lattice Lenses for Multiwavelength Achromatic Focusing,” Acs Nano, vol. 10, no. 11, pp. 10275-10282, Nov, 2016.
[25] W. T. Chen et al., “Broadband Achromatic Metasurface-Refractive Optics,” Nano Letters, vol. 18, no. 12, pp. 7801-7808, Dec, 2018.
[26] P. Y. Lu et al., “Performance Analysis of Metalenses Based on Three Kinds of Phase Compensation Techniques,” Nanomaterials, vol. 11, no. 8, Aug, 2021.
[27] W. Wang et al., “Polarization-independent longitudinal multi-focusing metalens,” Optics Express, vol. 23, no. 23, pp. 29855-29866, 2015/11/16, 2015.
[28] R. Bao et al., “Generation of diffraction-free beams using resonant metasurfaces,” New Journal of Physics, vol. 22, no. 10, Oct, 2020.
[29] H. Raether, “Surface-Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer Tracts in Modern Physics, vol. 111, pp. 1-133, 1988.
[30] A. V. Zayats, and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” Journal of Optics a-Pure and Applied Optics, vol. 5, no. 4, pp. S16-S50, Jul, 2003.
[31] A. Degiron, and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” Journal of Optics a-Pure and Applied Optics, vol. 7, no. 2, pp. S90-S96, Feb, 2005.
[32] M. I. Haftel, C. Schlockermann, and G. Blumberg, “Role of cylindrical surface plasmons in enhanced transmission,” Applied Physics Letters, vol. 88, no. 19, May 8, 2006.
[33] T. W. Ebbesen et al., “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, no. 6668, pp. 667-669, Feb 12, 1998.
[34] T. Thio et al., “Enhanced light transmission through a single subwavelength aperture,” Optics Letters, vol. 26, no. 24, pp. 1972-1974, Dec 15, 2001.
[35] M. Ashari-Bavil et al., “Compact plasmonic lens based on gradually decreasing size and separation nanohole cluster,” Journal of Optics, vol. 21, no. 8, Aug, 2019.
[36] Y.-Q. Liu et al., "High-Efficient and Polarization-Insensitive Metalens Using Sub-Wavelength Circular Slot Elements." pp. 1-3.
[37] L. Verslegers et al., “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Letters, vol. 9, no. 1, pp. 235-238, Jan, 2009.
[38] L. Lin et al., “Plasmonic Lenses Formed by Two-Dimensional Nanometric Cross-Shaped Aperture Arrays for Fresnel-Region Focusing,” Nano Letters, vol. 10, no. 5, pp. 1936-1940, May, 2010.
[39] E. S. H. Kang, H. Ekinge, and M. P. Jonsson, “Plasmonic fanoholes: on the gradual transition from suppressed to enhanced optical transmission through nanohole arrays in metal films of increasing film thickness,” Optical Materials Express, vol. 9, no. 3, pp. 1404-1415, Mar 1, 2019.