簡易檢索 / 詳目顯示

研究生: 邱羽澤
Ciou, Yu-Ze
論文名稱: 鎂摻雜之鈦酸鋇陶瓷 (Bam(Ti1-xMgx)O3-x m = 1.003, x = 0.00-0.10) 的製備、分析、與電性
Preparation, Characterization, and Electrical Properties of Magnesium-Doped Barium Titanate Ceramics (Bam(Ti1-xMgx)O3-x m = 1.003, x = 0.00-0.10)
指導教授: 黃啓原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 90
中文關鍵詞: 鈦酸鋇鎂摻雜晶體結構介電常數絕緣電阻
外文關鍵詞: Barium Titanate, Magnesium, Crystal Structure, Electrical Properties
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前積層陶瓷電容的製作為了降低生產成本且能大量生產,多以卑金屬材料作為
    內電極,鈦酸鋇陶瓷為兩電極層之間的介電材料,為了避免共燒時電極氧化而必須在
    還原氣氛下燒結,雖然避免金屬電極氧化的問題,但是介電材料因此容易出現半導化
    的現象,造成整體絕緣電阻率下降。為了改善半導化的現象,可以藉由添加低價離子
    去取代高價離子,形成受體補償以及抑制半導化現象。
    本 研 究 使 用 固 態 反 應 法 合 成 出 在 Ba/Ti >1 情 況 下 做 鎂 摻 雜 之 鈦 酸 鋇
    Ba1.003(Ti1-xMgx)O3-x (x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10) 之介電材料,藉由不同添加
    量之鎂離子取代鈦酸鋇中鈦的位置,了解鎂離子進入鈦酸鋇 Ti-site 後,對晶體結構、
    晶格參數、拉曼光譜、比表面積、顯微結構以及介電性質之影響,進而探討此材料在
    積層陶瓷電容應用之可行性。
    實驗結果顯示,Ba1.003(Ti1-xMgx)O3-x 粉末透過二階段煅燒可以合成出正方結構單
    一相 (x = 0.00-0.02);兩相結構區 (x = 0.04-0.06);六方結構單一相 (x = 0.08-0.10),
    透過 Rietveld refinement 精算、XRD 還有 Raman 分析,結果與文獻中提到六方結
    構的出現主要由於鈦酸鋇做鎂摻雜,隨著摻雜量增加氧空缺隨之增加造成正方結構逐
    漸扭曲,原子排列隨之改變為六方堆積模式且會有區域上分佈。
    介電常數的部分 (x = 0.00-0.02) 正方結構之介電常數 2000;(x = 0.04) 兩相結構
    區之介電常數 1000;(x = 0.08-0.10) 六方結構之介電常數 100。絕緣電阻率的方面在,
    燒結溫度 1350oC,x = 0.02 之成分有最高之值 5.86 (x1010 Ω • m)。溫度-電容曲線在
    燒結溫度 1350oC,x = 0.02-0.04 時,由於燒結時會對核殼結構之殼產生影響造成 TCC
    有較大的變化;x = 0.06-0.10,主要為六方結構對極化機制並不敏感,雖然 TCC 符
    合 (±15%),但其介電常數太低並不能作為 X5R 或 X7R 之應用。

    With the advancement of technology, the arrival of the 5G era, the popularization of electric vehicles, and the need for a large number of Multi-Layer Ceramic Capacity (MLCC) in the charging piles and servers of electric vehicles, there is currently a shortage of supply in the market. The reason why MLCC is widely used is that its advantages are high capacitance, thin layer (the thickness of a single dielectric layer is 1 µm and at least 5 grains in one layer), which can increase the number of stacked layers of the dielectric layer to increase the capacitance value and low cost. And suitable for mass production, high reliability and high temperature stability.At present, the research and development of MLCC dielectric layer materials is mainly based on barium titanate, because of its good ferroelectric, piezoelectric and excellent dielectric properties and low environmental pollution. And other characteristics are widely used and studied.
    In order to reduce the production cost, the multilayer ceramic capacitors on the market mostly use base metal materials such as nickel, copper and other metals as the internal electrodes. In order to avoid the oxidation of the electrode material caused by the base metal during co-firing, the sintering must be carried out in a reducing atmosphere. However, when co-firing in a reducing atmosphere, it is easy to cause a large number of oxygen vacancies and free electrons to appear in barium titanate cause phenomenon of semiconducting. This phenomenon will reduce the reliability of MLCC and reduce the insulation resistivity. In order to improve the problems caused by co-firing, low-valent cations can be added to
    replace high-valent cations to form acceptors to inhibit the semiconducting of barium titanate.

    目錄 摘要 I 致謝 XII 目錄 XIII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1-1前言 1 1-2 研究目的 1 第二章 前人文獻回顧及理論基礎 3 2-1 鈦酸鋇晶體結構及性質 3 2-2 鈦酸鋇的介電性質 6 2-3 鋇鈦比 8 2-3-1 鋇鈦比對鈦酸鋇之影響 8 2-3-2 鋇鈦比對顯微組織及電性之影響 12 2-3-2-1 Ba-excess 12 2-3-2-2 Ti-excess 12 2-4 鈦酸鋇的晶粒效應 14 2-5 置換作用 15 2-5-1 置換原理15 2-5-2 容忍因子 17 2-6 添加物對鈦酸鋇之影響 19 2-6-1同價離子添加-移動劑 (Shifter) 及平坦劑 (Depressor) 19 2-6-2異價離子添加-施體、受體及補償中性體 20 2-6-2-1 施體 (Donor) 20 2-6-2-2 受體 (Acceptor) 21 2-6-2-3 補償中性體 (Compensator) 21 2-6-3 鈦酸鋇-添加鎂離子之影響 22 2-7 鈦酸鋇半導化現象 24 2-7-1還原氣氛下燒結之半導化 (Reduced semiconductor) 24 2-7-2添加施體元素之半導化 (Controlled-valence semiconductor) 24 2-8 介電理論 25 2-8-1 介電常數 25 2-8-2 介電損耗 26 第三章 實驗方法與實驗流程 27 3-1 粉末製備與分析 28 3-1-1 起始原料 28 3-1-2 鎂摻雜鈦酸鋇粉末之製備 28 3-1-3 粉末之熱差/熱重分析 29 3-1-4 X光粉末繞射分析 30 3-1-5 晶格常數之分析 31 3-1-6 粉末拉曼光譜分析 31 3-1-7 粉末之微結構分析 32 3-1-8 比表面積分析 32 3-2 陶瓷體的製備及分析 33 3-2-1 鈦酸鋇陶瓷體製備 33 3-2-2 燒結收縮分析 34 3-2-3 陶瓷體密度測量與分析 34 3-2-4 掃描式電子顯微鏡與顯微結構分析 35 3-3 電性分析 36 3-3-1 陶瓷體電性量測樣品準備 36 3-3-2 介電常數與電容變化率 36 3-3-3 絕緣電阻量測 37 第四章 結果與討論 38 4-1 起始粉末分析 38 4-1-1 起始粉末之預燒 38 4-1-2 起始粉末相鑑定分析 38 4-1-3 顯微結構分析 41 4-2 起始混合粉末之DTA/TG分析 42 4-3 煅燒粉末之分析 44 4-3-1 結晶相分析 44 4-3-2 晶格常數分析 48 4-3-3 拉曼分析 51 4-3-4 比表面積分析 54 4-3-5 顯微結構分析 57 4-4 陶瓷體分析 64 4-4-1 燒結收縮曲線量測 64 4-4-2 陶瓷體密度量測 66 4-4-3 顯微結構分析 67 4-4-4 介電性質與絕緣電阻分析 75 4-4-5 陶瓷體結晶相分析 83 第五章 結論 85 參考文獻 87

    1. 張宸,鎂摻雜之鈦酸鋇的製備、分析與介電性質資源工程學系碩博士班,國立成功大學,台南市,2021。
    2. 杜明婷,鋇鈦比對於鈦酸鋇粉末晶粒大小及結晶相之影響,資源工程學系碩博士班,國立成功大學,台南市,2010。
    3. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, “Introduction to Ceramics,’’ America: John wiley & sons, 1976.
    4. A. Karvounis, F. Timpu, V. V. Neuling, R. Savo, and R. Grange, “Barium Titanate Nanostructures and Thin Films for Photonics,’’ Advanced Optical Materials, 2020.
    5. L.C. Dufour and C. Monty, “Surface and Interface of Ceramic Materials,’’ Springer Science & Business Media, 2012.
    6. G. Shirane, F. Jona, and R. Pepinsky, “Some Aspects of Ferroelectricity,’’ Proceedings of the IRE’’, 43(12), pp.1738-1793, 1955.
    7. W. D. Brown, D. Hess, V. Desai, and M. J. Deen, “Electrochemistry Encyclopedia.’’
    8. S. Lee, C.A. Randall, and Z.K. Liu, “Modified Phase Diagram for the Barium Oxide–Titanium Dioxide System for the Ferroelectric Barium Titanate,’’ Journal of the American Ceramic Society, 90(8), pp.2589-2594, 2007.
    9. Lee, S., Z.-K. Liu, M.-H. Kim, and C.A. Randall, “Influence of Non-stoichiometry on Ferroelectric Phase Transition in BaTiO3.’’ Journal of Applied Physics, 101(5), p.054119, 2007.
    10. S. H. Yoon, J. H. Lee, D. Y. Kim, and N. M. Hwang, “Effect of the Liquid‐Phase Characteristic on the Microstructures and Dielectric Properties of Donor‐(Niobium) and Acceptor‐(Magnesium) Doped Barium Titanate,” Journal of the American Ceramic Society, vol. 86, no. 1, pp. 88-92, 2003.
    11. J. K. Lee, K.S. Hong, and J.W. Jang, “Roles of Ba/Ti Ratios in the Dielectric Properties of BaTiO3 Ceramics,’’ Journal of the American Ceramic Society, 84(9), pp.2001-2006, 2001.
    12. G. Arlt, D. Hennings, and G. De With, “Dielectric Properties of Fine‐Grained Barium Titanate Ceramics,” Journal of Applied Physics, vol. 58, no. 4, pp. 1619-1625, 1985.
    13. H. Yong-An, L. Biao, Z. Yi-Xuan, L. Dan-Dan, Y. Ying-Bang, T. Tao, L. Bo, and L. Sheng-Guo, “Grain Size Effect on Dielectric, Piezoelectric and Ferroelectric Property of BaTiO3 Ceramics with Fine Grains.’’ Journal of Inorganic Materials, 33(7), pp.767-772, 2018.
    14. C. G. Bergeron and S. H. Risbud, “Introduction to Phase Equilibria in Ceramics’’, America: Wiley, 1984.
    15. M. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, and M. Hanuskova, “Influence of Foreign Ions on the Crystal Structure of BaTiO3.’’ Journal of the European Ceramic Society, 2000. 20(12), pp.1997-2007.
    16. L. A. Xue, Y. Chen, and R. J. Brook, “The Influence of Ionic Radii on the Incorporation of Trivalent Dopants into BaTiO3.’’ Materials Science and Engineering: B, 1(2), pp.193-201, 1988.
    17. O. Muller and R. Roy, “The Major Ternary Structural Families.’’ Berlin-Heidelberg-New York: Springer-Verlag, 1974.
    18. C. Schinzer, “Distortion of Perovskites,’’ Retrieved, 2012.
    19. D. Yoon, “Tetragonality of Barium Titanate Powder for a Ceramic Capacitor Application.’’ Journal of Ceramic Processing Research, 7(4), p.343, 2006.
    20. R. Machado, A. D. Loreto, A. Frattini, M. Sepliarsky, and M. Stachiotti, “Site Occupancy Effects of Mg Impurities in BaTiO3,” Journal of Alloys and Compounds, vol. 809, pp. 151847, 2019.
    21. G. M. Keitha, M. J. Ramplinga, K. Sarmab, N. M. Alfordb, D.C. Sinclaira, “Synthesis and Characterisation of Doped 6H-BaTiO3 Ceramics,” Journal of the European Ceramic Society 24, pp. 1721–1724, 2004.
    22. R. Alka, J. Kolte, S. S. Vadla, P. Gopalan, “Structural, Electrical, Magnetic and Magnetoelectric Properties of Fe Doped BaTiO3 Ceramics,” Ceramics International 42, pp. 8010-8016, 2016.
    23. J. Jeong and Y. H. Han, “Effects of MgO-Doping on Electrical Properties and Microstructure of BaTiO3,” Japanese Journal of Applied Physics, vol. 43, no. 8R, pp. 5373, 2004.
    24. J. Lin and T. Wu, “Effects of Isovalent Substitutions on Lattice Softening and Transition Character of BaTiO3 Solid Solutions,” Journal of Applied Physics, vol. 68, no. 3, pp. 985-993, 1990.
    25. D. Hennings, A. Schnell, and G. Simon, “Diffuse Ferroelectric Phase Transitions in Ba(Ti1‐yZry)O3 Ceramics,” Journal of the American Ceramic Society, vol. 65, no. 11, pp. 539-544, 1982.
    26. L. A. Xue, Y. Chen, and R. J. Brook, “The Influence of Ionic Radii on the Incorporation of Trivalent Dopants into BaTiO3,” Materials Science and Engineering: B, vol. 1, no. 2, pp. 193-201, 1988.
    27. D. Makovec, Z. Samardžija, U. Delalut, and D. Kolar, “Defect Structure and Phase Relations of Highly Lanthanum‐Doped Barium Titanate,” Journal of the American Ceramic Society, vol. 78, no. 8, pp. 2193-2197, 1995.
    28. T. Nagai, K. Iijima, H. J. Hwang, M. Sando, T. Sekino, and K. Niihara, “Effect of MgO Doping on the Phase Transformations of BaTiO3,” Journal of the American Ceramic Society, vol. 83, no. 1, pp. 107-12, 2000.
    29. S. T. Bae, D. K. Yim, K. S. Hong, J. S. Park, H. Shin, and H. S. Jung, “Role of Liquid Phase in Achieving a Fine Microstructure and Diffusive Phase Transition of MgO‐Doped BaTiO3,” International Journal of Applied Ceramic Technology, vol. 6, no. 6, pp. 679-686, 2009.
    30. O. Saburi, “Properties of Semiconductive Barium Titanates,” Journal of the Physical Society of Japan, vol. 14, no. 9, pp. 1159-1174, 1959.
    31. A. C. Larson and R. B. V. Dreele, “General Structure Analysis System (GSAS),’’ New Mexico: Los Alamos National Laboratory, 2004.
    32. H. Rietveld, “Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement,” Acta Crystallographica, vol. 22, no. 1, pp. 151-152, 1967.
    33. J. Freire and R. Katiyar, “Lattice Dynamics of Crystals with Tetragonal BaTiO3 Structure,” Physical Review B, vol. 37, no. 4, pp. 2074, 1988.
    34. J. T. Last, “Infrared-Absorption Studies on Barium Titanate and Related Materials,” Physical Review, vol. 105, no. 6, pp. 1740, 1957.
    35. U. D. Venkateswaran, V. M. Naik, and R. Naik, “High-Pressure Raman Studies of Polycrystalline BaTiO3,” Physical Review B, vol. 58, no. 21, pp. 14256, 1998.
    36. E. Mejia-Uriarte, R. Sato-Berru, M. Navarrete, M. Villagrán-Muniz, C. Medina-Gutiérrez, and C. Frausto-Reyes, “Phase Transition of Polycrystalline BaTiO3 at High-Pressure Detected by a Pulsed Photoacoustic Technique,” Measurement Science and Technology, vol. 17, no. 6, pp. 1319, 2006.
    37. C. Perry and D. Hall, “Temperature Dependence of the Raman Spectrum of BaTiO3,” Physical Review Letters, vol. 15, no. 17, pp. 700, 1965.
    38. D. E. McCauley, M. S. Chu, and M. H. Megherhi, “PO2 Dependence of the Diffuse‐Phase Transition in Base Metal Capacitor Dielectrics,” Journal of the American Ceramic Society, vol. 89, no. 1, pp. 193-201, 2006.
    39. H. Gong, X. Wang, Q. Zhao, L. Li, “Effect of Mg on the Dielectric and Electrical Properties of BaTiO3-Based Ceramics,” J Mater Sci (2015).
    40. B. Poojitha, A. Kumar, A. Rathore, S. Saha, “Correlations Between the Structural, Magnetic, and Ferroelectric Properties of BaMO3: M = Ti1-x(Mn/Fe)x Compounds: A Raman Study,” Department of Physics, Indian Institute of Science Education and Research, Bhopal, 462066, India.
    41. D. P. Dutta, M. Roy, N. Maitib and A.K. Tyagia, “Phase Evolution in Sonochemically Synthesized Fe3+ Doped BaTiO3 Nanocrystallites: Structural, Magnetic and Ferroelectric Characterization,” Phys. Chem, 2016, 18, 9758.
    42. S.C. Jeon, B.K. Yoon, K.H. Kim, J. L. Kang, “Effects of Core/Shell Volumetric Ratio on the Dielectric Temperature Behavior of BaTiO3,” Journal of Advanced Ceramics, 3(1) pp.76–82, 2014.

    無法下載圖示 校內:2027-08-22公開
    校外:2027-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE