簡易檢索 / 詳目顯示

研究生: 洪琬琪
Hung, Wan-Chi
論文名稱: 重金屬影響植物根部生長及發育機制之探討
The mechanism(s) of inhibitory effects of heavy metals on plant root growth and development
指導教授: 黃定鼎
Huang, Dinq-Ding
黃浩仁
Huang, Hao-Jen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物學系
Department of Biology
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 99
中文關鍵詞: 訊息傳遞水稻細胞死亡重金屬
外文關鍵詞: signal transduction, rice, heavy metal, cell death
相關次數: 點閱:123下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 重金屬是環境中主要的有毒污染物之一,隨著快速的工業化,使環境中重金屬的含量增加而對所有的生物體造成危害。在植物中,過去研究資料顯示,當植物體內累積過量的重金屬,會使植物體的一些生理現象產生變化,如蒸散作用減少,光合作用速率降低,並改變(通常是抑制)一些酵素的活性,其對於植物生長與發育的影響亦已被證實。然而,其機制卻尚未清楚明瞭。
    植物根部是植物體接觸環境土壤的主要器官,當環境中的重金屬過量,會對植物根部造成嚴重的傷害。本實驗以阿拉伯芥及水稻兩種植物為代表,探討重金屬是透過那些分子機制影響植物根部生長及發育。結果顯示,在影響植物根部發育方面,從阿拉伯芥的下胚軸癒傷組織(hypocotyl callus)誘導根部再分化時,會受到重金屬鎘及銅處理的抑制;在影響植物根部生長方面,重金屬銅會抑制水稻植物根部生長,並造成根部尖端細胞死亡及DNA斷裂(DNA fragmentation)。若前處理抗氧化劑—GSH, DTT, NAC、細胞外鈣離子螯合劑—EGTA、細胞膜上鈣離子通道抑制劑—La3+、攜鈣素(calmodulin)抑制劑—W7、蛋白質去磷酸酶抑制劑—cantharidin、sodium orthovanadate及MAPK kinase (mitogen-activated protein kinase kinase)活性抑制劑—PD098059、U0126,則皆可抑制銅所造成的根部尖端細胞死亡。推測活化氧族(Reactive oxygen species, ROS)的產生、細胞外鈣離子流入細胞內、蛋白質去磷酸酶以及MAPK pathway可能參與銅所誘導的水稻根部尖端細胞死亡之過程。
    生物體常藉由磷酸化或去磷酸化蛋白質分子調控其活性,進而影響細胞生理反應。在哺乳動物中,重金屬會抑制細胞的生長及分化;且細胞內接受酪胺酸 (tyrosine) 磷酸化之蛋白質已被證實會受到重金屬處理而改變;然而,在植物中,蛋白質酪胺酸磷酸化的研究卻有限。利用抗體偵測酪胺酸磷酸化蛋白質,以探討其在重金屬抑制阿拉伯芥根部發育及重金屬誘導水稻根部細胞死亡過程中的角色,發現在鎘抑制阿拉伯芥根部發育中,有一分子量大約80 kDa的酪胺酸磷酸化蛋白質的表現量會上升;而在銅誘導水稻根部細胞死亡情形中,有一分子量大約是45 kDa的酪胺酸磷酸化蛋白質的表現量會下降。為進一步了解酪胺酸去磷酸化在銅誘導根部細胞死亡下所
    扮演的角色,利用外加蛋白質去磷酸酶抑制劑sodium orthovanadate、抗氧化劑GSH及鈣離子螯合劑EGTA,發現皆可抑制銅所誘導的蛋白質酪胺酸去磷酸化。此外,以MAPK為主的訊息傳遞系統在生物體面臨生物性及非生物性壓力時,亦扮演重要角色。由於水稻中OsMAPK2參與某些逆境訊息的傳遞,因此,進一步探討水稻中OsMAPK2在銅處理下的表現及其調節機制,結果顯示:OsMAPK2基因表現量會受到重金屬銅及過氧化氫逆境刺激的誘導而增加。抗氧化劑GSH、鈣離子螯合劑EGTA、細胞膜上鈣離子通道抑制劑La3+及蛋白質去磷酸酶抑制劑cantharidin,皆可抑制重金屬銅所誘導的OsMAPK2基因表現。這些結果顯示,在重金屬抑制阿拉伯芥根部發育及重金屬誘導水稻根部細胞死亡之過程中,可能與酪胺酸磷酸化/去磷酸化及MAPK pathway的活化有密切關聯。然而,其間的相互關係及是否有其他因子參與,則有待進一步研究探討。

    Heavy metal toxicity is one of the major environment health problems in modern society. Rapid industrialization and urbanization have enhanced the levels of toxic heavy metals in the environment posing a potential health hazard for all living organisms. In plants, these heavy metals when accumulated in excess amounts can function as stressors causing physiological constraints and alterations in various vital growth processes, such as transpiration, photosynthesis, enzyme activities. It has been known that heavy metals exert inhibitory effects in plant growth and development. However, the mechanism involved in its effect is not well understood.
    Roots of plants are damaged if the dose of heavy metals exceeds threshold levels. In this study, we used two model plants, Arabidopsis and rice, to study the molecular mechanism(s) of heavy metals on root growth and development. In Arabidopsis, the redifferentiation of adventitious roots from hypocotyl callus was severely damaged by Cd and Cu treatments. In rice, copper treatment caused the inhibition of root growth as well as the cell death and DNA fragmentation of root cells. Pre-treatment of rice roots with antioxidants (GSH, NAC, DTT), calcium chelator (EGTA), plasma-membrane calcium channel blocker (La3+), calmodulin antagonist (W-7), protein phosphatase inhibitors (sodium orthovanadate, cantharidin) and MAPK kinase (MEK) inhibitors (PD098059, U0126) blocked copper-induced cell death. We suggest that ROS production, extracellular calcium ions, protein phosphatase and activation of MAPK pathway are probably involved in copper-induced cell death of root-tip cells in rice.
    Protein phosphorylation and dephosphorylation are involved in the regulation of many eukaryotic intracellular processes. It has been known that heavy metals inhibit the proliferation and differentiation of cells in animals. The variations in protein tyrosine phosphorylation caused by heavy metals has been studied in mammalian cells. However, data related to the involvement of protein tyrosine phosphorylation in plant growth and development influenced by heavy metals was limited. In this study, the possible roles of
    protein tyrosine phosphorylation in cadmium-inhibited root development in Arabidopsis and copper-induced cell death of root-tip cells in rice were investigated. In cadmium- inhibited root development in Arabidopsis, a 80-kDa protein was highly tyrosine phosphorylated. In copper-induced cell death of rice root-tip cells, the level of tyrosine phosphorylation of a 45-kDa protein was decreased. Pre-treatment of rice roots with tyrosine phosphatase inhibitor sodium orthovanadate, the antioxidant GSH and the calcium chelator EGTA significantly abolished copper-induced protein tyrosine dephosphorylation. In addition, MAPKs play important roles in signal transduction in responses to biotic and abiotic stresses. Since OsMAPK2 function in specific stress-signalling pathway, the MAP kinase gene (OsMAPK2) expression in rice under copper stress was also investigated. OsMAPK2 transcript accumulation was enhanced by copper and H2O2 in rice root-tip cells. Using Northern blot analysis, it was shown that antioxidant agent (GSH), calcium chelator (EGTA), plasma-membrane calcium channel blocker (La3+) and protein phosphatase inhibitor (cantharidin) inhibited copper-induced OsMAPK2 gene expression. These results indicate that tyrosine phosphorylation/ dephosphorylation and activation of MAPK pathway are probably involved in heavy metals-inhibited root development in Arabidopsis and heavy metals-induced cell death of rice root-tip cells. These results provide some information for further studies on the mechanism(s) of heavy metal toxicity in plants.

    Acknowledgements…………………………………………………………..1 Contents………………………………………………………………………2 List of Figures………………………………………………………………5 Abbreviation………………………………………………………………….9 Chinese abstract…………………………………………………………….10 Abstract…………………………………………………………………….12 1. Introduction………………………………………………………………14 1.1 Effects of cadmium toxicity in higher plants…………………………………….14 1.2 Effects of copper toxicity in higher plants………………………………………..16 1.3 Cell death caused by heavy metals………………………………………………..16 1.4 Response to heavy metal stress in plants…………………………………………17 1.5 Glutathione: Keeping active oxygen under control……………………………...19 1.6 MAP kinase signal transduction pathways in plants……………………………20 1.7 Transcriptional control of plant MAPKs cascades………………………………21 1.8 Aims of this study………………………………………………………………….22 2. Materials and Methods…………………………………………………23 2.1 Plant materials and growth conditions…………………………………………..23 2.2 Whole mount preparation………………………………………………………...24 2.3 Green fluorescent protein detection………………………………………………24 2.4 Root length determination………………………………………………………...24 2.5 Evaluation of cell death using Evans blue staining……………………………...25 2.6 DNA isolation and electrophoresis……………………………………………….25 2.7 Western blot analysis……………………………………………………………...26 2.8 RNA isolation and Northern blot analysis……………………………………….28 2.9 Statistic analysis……………………………………………………………………31 3. Results…………………………………………………………………….32 3.1.1 The effect of cadmium on seed germination in Arabidopsis…………………..32 3.1.2 The effect of cadmium and copper on root organogenesis and callus formation in Arabidopsis……………………………………………………………………32 3.1.3 The effect of cadmium on protein tyrosine phosphorylation…………………33 3.2.1 The effect of copper and cadmium on the growth of roots in rice……………33 3.2.2 The induction of cell death by copper and cadmium in rice cells……………33 3.2.3 Effects of the presence of GSH, NAC and DTT in the incubation medium on the copper-induced cell death in rice root-tip cells…………………………...34 3.2.4 Effects of the presence of EGTA, La, W-7 and ruthenium red (RR) in the incubation medium on the copper-induced cell death in rice root-tip cells…34 3.2.5 Effects of protein phosphatase inhibitors on copper-induced cell death in rice root-tip cells……………………………………………………………………..35 3.2.6 Effects of protein kinase inhibitors on copper-induced cell death in rice root-tip cells……………………………………………………………………..35 3.2.7 The effect of PD098059 and U0126 ( the MEK inhibitors) on copper-induced cell death in rice root-tip cells……………………………………………….…36 3.2.8 Detection of DNA fragmentation in copper-treated rice cells………………..36 3.2.9 Inhibition of Copper-induced DNA fragmentation by EGTA, GSH and Na3VO4…………………………………………………………………………..36 3.3.1 Effects of copper on protein tyrosine phosphorylation in rice roots…………37 3.3.2 Protein tyrosine phosphatase inhibitor prevents copper-induced protein tyrosine dephosphorylation…………………………………………………….37 3.3.3 Effects of the presence of GSH and EGTA in the incubation medium on the copper-induced protein tyrosine dephosphorylation…………………………38 3.4.1 Expression of the OsMAPK genes in response to CuCl2 and CdCl2 in rice roots……………………………………………………………………………...38 3.4.2 The effects of copper (Cu) and hydrogen peroxide (H2O2) on OsMAPK2 transcript accumulation in rice root-tip cells…………………………………39 3.4.3 The role of reactive oxygen species (ROS) in copper-induced OsMAPK2 transcript accumulation………………………………………………………..39 3.4.4 Requirement of Ca2+ in copper-induced OsMAPK2 transcript accumulation ……………………………………………………………………………………40 3.4.5 Effects of signalling molecules, protein serine/threonine phosphatase inhibitor and protein serine/threonine kinase inhibitor on copper-induced OsMAPK2 transcript accumulation………………………………………………………...40 4. Discussion…………………………………………………………………42 5. References………………………………………………………………...50

    Asai T, Stone JM, Heard JE, Kovtun Y, Yorgey P (2000) Fumonisin B1-induced cell
    death in Arabidopsis protoplasts requires jasmonate-, ethylene-, andsalicylate- dependent signaling pathways. Plant Cell 12: 823-1835.

    Atkinson MM, Keppler LD, Orlandi EW, Baker CJ, Mischke CF (1990) Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+ and hypersensitive responses in tobacco. Plant Physiol. 92: 215-221.

    Azzouzi BE, Tsangaris GT, Pellegrini O, Manuel Y, Benveniste J, Thomas Y (1994) Cadmium induces apoptosis in a human T cell line. Toxicol. 88: 127-139.

    Barizza E, Schiavo FL, Terzi M, Filippini F (1999) Evidence suggesting protein tyrosine phosphorylation in plants depends on the developmental conditions. FEBS Lett. 447: 191-194.

    Bennet RJ, Breen CM (1991) The aluminium signal: new dimensions to mechanisms of aluminium tolerance. Plant Soil. 134: 153-166.

    Beyersmann D, Hechtenberg S (1997) Cadmium, gene regulation, and cellular signaling in mammalian cells. Toxicol. Appl. Pharmacol. 144: 247-261.

    Buckner B, Janick-Buckner D, Gray J, Johal GS (1998) Cell-death mechanisms in maize. Trends Plant Sci. 3: 218-223.

    Callard D, Axelos M, Mazzolini L (1996) Novel molecular markers for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence. Plant Physiol. 112: 705-715.

    Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S (1991) Oncogenes and signal transduction. Cell 64: 281-302.

    Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol. 73: 844-848.

    Chaoui A, Mazhouri S, Ghorbal MH, Ferjani EE (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci. 127: 139-147.

    Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123: 825-832.

    Cooke DT, Burden RS (1997) Lipid modulation of plasma membrane- bound ATPases. Physiol. plant. 78: 153-9.

    Delisle G, Champoux M, Houde M (2001) Characterization of oxalate oxidase and cell
    death in Al-sensitive and tolerant wheat roots. Plant Cell Physiol. 4: 324-333.

    Di Domenico A, Rocca CL, Lintas C, Baldassari LT (1989) Assessment of exposure to environment microcontaminants and pesticide residues in Scapharca inaequivalvis. Bull. Environ. Contam. Toxicol. 43: 556-563.

    Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J. exp. bot. 52: 1101-1109.

    Earnshaw WC (1995) Nuclear changes in apoptosis. Curr. Biol. 7: 337-343.

    Eischen CM, Dick CJ, Leibson PJ (1994) Tyrosine kinase activation provides an early and requisite signal for Fas-induced apoptosis. J. immunol. 153: 1947-1954.

    Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol. 122: 657-665.

    Fiskesjö G (1981) Allium test on copper in drinking water. Vatten. 17: 232-240.

    Fiskesjö G (1988) The Allium test ─ an alternative in environmental studies: the relative
    toxicity of metal ions. Mutat. Res. 197: 243-260.

    Fojtova M, Kovarik A (2000) Genotoxic effect of cadmium is associated with apoptotic
    changes in tobacco cells. Plant cell environ. 23: 531-537.

    Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione-associated mechanism of acclimatory stress tolerance and signaling. Physiol. Plant. 100: 241-254.

    Fu SF, Chou WC, Huang DD, Huang HJ (2002) Transcriptional regulation of a rice
    mitogen-activated protein kinase gene, OsMAPK4, in response to environmental
    stresses. Plant Cell Physiol. 43: 958-963.

    Fu SF, Lin WP, Ho SL, Chou WC, Huang DD, Yu SM, Huang HJ (2003) Molecular
    cloning and characterization of a novel starvation inducible MAP kinase gene in rice.
    Plant Physiol. Biochem. 41: 207-213.

    Fűrst P, Hu S, Hackett R, Hamer D (1988) Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell 55: 705-717.

    Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant sci. 121: 151-159.

    Greger M, Ögren E (1991) Direct and indirect effects of Cd2+ on photosynthesis in sugar beet (Beta vulgaris). Physiol. Plant. 83: 129-135.

    Haag-Kerwer A, Schäfer HJ, Heiss S, Walter C, Rausch T (1999) Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J. exp. bot. 50: 1827-1835.

    Habeebu SSM, Liu J, Klaassen CD (1998) Cadmium-induced apoptosis in mouse liver. Toxicol. Appl. Pharmacol.149: 203-209.

    Hagar H, Ueda N, Shah SV (1997) Tyrosine phosphorylation in DNA damage and cell death in hypoxic injury to LLC-PK1 cells. Kidney int. 51: 1747-1753.

    Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and discasc. Biochem. J. 219: 1-14.

    He C, Fong SH, Yang D, Wang GL (1999) BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol. Plant-Microbe. Interact. 12: 1064-1073.

    Hechtenberg S, Beyersmann D (1991) Inhibition of satcoplasmic reticulum Ca2+–ATPase activity by cadmium, lead and mercury. Enzyme. 45: 109-115.

    Herskowitz I (1995) MAP kinase pathways in yeast: for mating and more. Cell 80:
    187-197.

    Hoshino N, Kimura T, Yamaji A, Ando T (1999) Damage to the cytoplasmic membrane
    of Escherichia coli by catechin-copper (Ⅱ) complexes. Free Radic. Biol. Med. 27:1245-
    1250.

    Houot V, Etienne P, Petitot AS, Barbier S, Blein JP, Suty L (2001) Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent manner. J. exp. bot. 52: 1721-1730.

    Huang HJ, Fu SF, Tai YH, Chou WC, Huang DD (2002) Expression of Oryza sativa MAP kinase gene is developmentally regulated and stress-responsive. Physiol. Plant. 114: 572-580.

    Huang HJ, Lin YM, Huang DD, Takahashi T, Sugiyama M (2003) Protein tyrosine phosphorylation of the cell cycle in Arabidopsis hypocotyls. Plant and cell physiol. (In press)
    Huang LC, Pu SY, Murashige T, Fu SF, Kuo TT, Huang DD, Huang HJ (2003) Rejuvenation of Seqquuoia sempervirens in vitro: Phase and age-related differences in protein tyrosine phosphorylation. Biologia. Plantarum. (accepted)

    Hung JJ, Cheng TJ, Lai YK, Chang MD-T (1998) Differential activation of p38
    mitogen- activated protein kinases confers cadmium-induced HSP70 expression in 9L
    rat brain tumor cells. J. Biol. Chem. 273: 31924-31931.

    Hunter T (1995) Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. Cell 80: 225-236.

    Iryo Y, Matsuoka M, Wispriyono B (2000) Involvement of the extracellular signal-
    regulated protein kinase (ERK) pathway in the induction of Apoptosis by cadmium
    chloride in CCRF-CEM cells. Biochem. Pharmacol. 60: 1875-1882.

    Jiang W, Liu D, Li H (2000) Effect of Cu2+ on root growth, cell division, and nucleolus of
    Helianthhus annuus L. Sci. total environ. 256: 59-65.

    Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Natl. Acad. Sci. USA 93: 11274-11279.

    Jones AM (2001) Programmed cell death in development and defense. Plant Physiol. 125: 94-97.

    Jong AJD, Hoeberichts FA, Yakimova ET, Maximova E, Woltering EJ (2000) Chemical-induced apoptotic cell death in tomato cells: involvement of caspase-like proteases. Planta. 211: 656-662.

    Kahle H (1993) Response of roots of trees to heavy metals. Environ. exp. bot. 33: 99-119.

    Karpinski S, Reynolds H, Karpinski B, Wingsle G, Creissen G, Mullineaux P (1999)
    Systemic signaling and acclimation in response to excess excitation energy in
    Arabidopsis. Science 284: 654-657.

    Katsuhara M (1997) Apoptosis-like cell death in barley roots under salt stress. Plant and cell physiol. 38: 1091-1093.

    Kawai M, Uchimiya H (2000) Coleoptile senescence in rice (Oryza sativa L.). Ann. bot. 86: 405-414.

    Koukalová B, Kovaík A, Fajkus J, Irok J (1997) Chromatin fragmentation associated with apoptotic changes in tobacco cells exposed to cold stress. FEBS Lett. 414: 289-292.

    Krupa Z (1988) Cadium-induced change in the composition and structureof the light-harvesting complex Ⅱ in radish cotyledons. Plant. 73: 518-524.

    Lange-Carter, CA, Pleiman, CM, Gardner, AM, Bxlumer, KJ, Johnson, GL (1993) A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260: 315-319.

    Larsson EH, Bornman JF, Asp H (1998) Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J. exp. bot. 49: 1031-1039.

    Levan A (1945) Cytological reaction induced by inorganic salt solution. Nature (London)
    156: 751.

    Levine A, Pennell RI, Alvarez ME, Palmer R, Lamb C (1996) Calcium-mediated
    Apoptosis in a plant hypersensitive disease resistance response. Curr. Biol. 6: 427-437.

    Lewis TE, McIntosh AW (1989) Covariation of selected trace elements with binding
    substrates in ores collected from two contaminated sediments. Bull. Environ. Contam.
    Toxicol. 43: 518-528.

    Li L,Tucker RW, Hennings H, Yuspa SH (1995) Chelation of intracellular Ca2+ inhibits murine keratinocyte differentiation in vitro. J. cell. physiol. 163:105-114.

    Ligterink W, Kroj T, zur Nieden U, Hirt H, Scheel D (1997) Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science 276: 2054-2057.

    Liu DH, Jiang WS, Lu C, Zhao FM (1994) Effects of copper sulfate on the nucleolus of
    Allium cepa root-tip cells. Hereditas. 120: 87-90.

    Lohmann RD, Beyersmann D (1993) Effects of zinc and cadmium on apoptotic DNA fragmentation in isolated bovine liver nuclei. Environ. Health. Perspect. 102 (Suppl 3): 269-271.

    Luna CM, Gonzalez CA, Trippi VS (1994) Oxidative damage caused by excess of copper in oat leaves. Plant Cell Physiol. 35: 11-15.

    May M, Vernoux T, Leaver C, van Montagu M, Inzé D (1998) Glutathione homeostasis
    in plants: implication for environmental sensing and plant development. J. exp. bot. 49:
    649-667.

    McCabe PF, Leaver CJ (2000) Programmed cell death in cell cultures. Plant mol. biol.
    44: 359-368.

    Mccarthy I, Romero-Puertas MC, Palma JM, Sandalio LM, Corpas FJ, Gómez M, Delrío LA (2001) Cadmium induces senescence symptoms in leaf peroxisomes of pea plants. Plant cell environ. 24: 1065-1073.

    Mira H, Martínez N, Peñarrubia L (2002) Expression of a vegetative-storage-protein gene from Arabidopsis is regulated by copper, senescence and ozone. Planta. 214: 939-946.

    Misra UK, Gawdi G, Akabani G and Pizzo SV (2002) Cadmium-induced DNA synthesis and cell proliferation in macrophages: The role of intracellular calcium and signal transduction mechanisms. Cell. signal. 14: 327-340.
    Mittler R, Feng X, Cohen M (1998) Post-transcriptional suppression of cytosolic ascorbate peroxidase expression during pathogen-induced programmed cell death in tobacco. Plant Cell 10: 461-473.
    Mittler R, Lam E (1995) In-situ detection of nDNA fragmentation during the differentiation of tracheary elements in higher plants. Plant Physiol. 108: 489-493.
    Mittler R, Shulaev V, Seskar M, Lam E (1996) Inhibition of programmed cell death in tobacco plants during a pathogen-induced hypersensitive response at low oxygen pressure. Plant Cell 8: 1991-2001.
    Mizoguchi T, Irie K, Shinozaki K (1997) Environmental stress response in plants: The
    role of mitogen-activated protein kinase. Trends Biotechnol. 15: 15-19.

    Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto
    K, Shinozaki K (1996) A gene encoding a mitogen-activated protein kinase kinase
    kinase is induced simultaneously with genes for a mitogen-activated protein kinase and
    S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana.
    Proc. Natl. Acad. Sci. USA 93: 765-769.

    Morel Y, Barouki R (1999) Repression of gene expression by oxidative stress. Biochem. J. 342: 481-496.

    Morris PC (2001) MAP kinase signal transduction pathways in plants. New phytol. 151: 67-89.

    Morris PC, Guerrier D, Leung J, Giraudat J (1997) Cloning and characterisation of
    MEK1, an Arabidopsis gene encoding a homologue of MAP kinase kinase. Plant Mol.
    Biol. 35: 1057-1064.

    Navarre DA, Wolpert TJ (1999) Victorin induction of an apoptotic/senescence-like
    response in oats. Plant Cell 11: 237-249.

    Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide
    and nitric oxide as signaling molecules in plants. J. exp. bot. 53: 1237-1247.

    Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under
    control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 249-279.

    Orzáez D, Granell A (1997) DNA fragmentation is regulated by ethylene during arpel
    senescence in Pisum sativum. Plant J.l 11: 137-144.

    Otani H, Erdos M, Leonard WJ (1993) Tyrosine kinase(s) regulate apoptosis and bcl-2 expression in a growth factor-dependent cell line. J. biol. chem. 268: 22733-22736.

    Ouzounidou G (1994) Root growth and pigment composition in relationship to element
    uptake in Silene compacta plants treated with copper. J. Pl. Nutr. 17: 933-943.

    Ouzounidou G, Ciamporová M, Moustakas M, Karataglis S (1995) Responses of maize
    (Zea mays L.) plants to copper stress ─ I. Growth mineral content and ultrastructure of
    roots. Environ. exp. bot. 35: 167-176.

    Ouzounidou G, Eleftheriou E, Karataglis S (1992) Ecophysiological and ultrastructural
    effects of copper in Thlaspi ochroleucum Cruciferae. Can. J. Bot. 70: 947-957.

    Ozawa S, Yasutani I, Fukuda H, Komamine A, Sugiyama M (1998) Organogenic responses in tissue culture of srd mutants of Arabidopsis thaliana. Development 125: 135-142.

    Palma JM, Gomez M, Yanez J, Del Rio LA (1987) Increased levels of peroxisomal active oxygen-related enzymes in copper-tolerant pea plants. Plant Physiol. 85: 570-574.

    Pan J, Zhu M, Chen H (2001) Aluminum-induced cell death in root-tip cells of barley. Environ. exp. Bot. 46: 71-79.

    Pennel RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9: 1157-1168.

    Punz WF, Sieghardt H (1993) The response of roots of herbaceous plant apecies to heavy metals. Environ. exp. bot. 33: 85-98.

    Quariti O, Boussama N, Zarrouk M, Cherif A, Ghorbal MH (1997) Cadmium- and copper-induced changes in tomato membrane lipids. Phytochemistry 45: 1343-1350.

    Rauser WE, Schupp R, Rennenberg H (1991) Cysteine, γ-glutamylcysteine and glutathione levels in maize seedlings:distribution and translocation in normal and
    cadmium-exposed plants. Plant Physiol. 97: 128-138.

    Ren D, Yang H, Zhang S (2002) Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J. Biol. Chem. 277: 559-565.

    Ric De Vos CH, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus.
    Plant Physiol. 98: 853-858.

    Romeis T (2001) Protein kinases in the plant defence response. Curr. Opin. Plant Biol. 4: 407-414.

    Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 109: 1427-1433.

    Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 643-668.

    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, Ed 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press

    Samet JM, Graves LM, Quay J, Dailey LA, Devlin RB, Ghio AJ, Wu W, Bromberg PA, Reed W (1998) Activation of MAPKs in human bronchial epithelial cells exposed to metals. Am. J. Physiol. 275: L551-L558

    Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants.
    J. exp. bot. 364: 2115-2126.

    Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ. exp. bot. 41: 105-130.

    Savino G, Briat J-F, Lobréaux S (1997) Inhibition of the iron-induced ZmFer1 Maize
    ferritin gene expression by antioxidants and serine/threonine phosphatase inhibitors.
    Environ. exp. bot. 272: 33319-33326.

    Seo S, Okamoto M, Seto H, Ishizuka K, Sano H, Ohashi Y (1995) Tobacco MAP
    kinase: a possible mediator in wound signal transduction pathways. Science 270: 1988-
    1992.

    Shaw BP (1995) Changes in the levels of photosynthetic pigments in Phaseolus aureus Roxb. exposed to Hg and Cd at two stages of development: a comparative study. Bull. Environ. Contam. Toxicol. 55: 574-580.

    Sheline CT, Choi EH, Kim-Han JS, Dugan LL, Choi DW (2002) Cofactors of mitochondrial enzymes attenuate copper-induced death in vitro and in vivo. Ann. Neurol. 52(2):195-204.

    Shimamoto K, Takahashi A, Henmi K, Ono E, Hatakeyama S, Iwano M, Kawasaki T
    (1999) Programmed cell death in plants. Plant Biotechnol. 16: 49-53.

    Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 7: 161-167.

    Siedlecka A, Krupa Z, Samuelsson G, Öquist G, Gardeström P (1997) Primary carbon metabolism in Phaseolus vulgaris plants under Cd/Fe interaction. Plant Physiol. Biochem. 35: 951-957.

    Skórzyńska E, Baszyński T (1997) Differences in sensitivity of the photosynthetic apparatus in Cd-stressed runner bean plants in relation to their age. Plant sci. 128: 11-21.

    Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A (1999) The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11: 431-444.

    Somssich, IE (1997) MAP kinases and plant defence. Trends Plant Sci. 2: 406-408.

    Stäb MR, Ebel J (1987) Effects of Ca2+ on phytoalexin induction by fungal elicitor in
    soybean cells. Arch. Biochem. Biophys. 257: 416-423.

    Stobart AK, Griffiths WT, Ameen-Bukhari I, Robert RP (1985) The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol. Plant. 63: 293-298.

    Subbaiah CC, Bush DS, Sachs MM (1994) Elevation of cytosolic calcium precedes
    Anoxic gene expression in maize suspension cultured cells. Plant Cell 6: 1747-1762.

    Sugiyama M (1999) Organogenesis in vitro. Curr. Opin. Plant Biol. 2: 61-64.

    Suzuki K, Yano A, Shinshi H (1999) Slow and prolonged activation of the p47 protein
    kinase during hypersensitive cell death in a culture of tobacco cells. Plant Physiol. 119:
    1465-1472.

    Suzuki N, Koizumi N, Sano H (2001) Screening of cadmium-responsive genes in Arabidopsis thaliana. Plant Cell Environ. 24: 1177-1188.

    Tester M (1990) Plant ion channels: whole-cell and signal-channel studies. New Phytol. 114: 305-340.

    Thomas, G (1992) MAP kinase by any other name smells just as sweet. Cell 68: 3-6.

    Verbost PM, Senden MHMN, van Os CH (1987) Nanomolar concentrations of Cd2+
    inhibit Ca2+ transport systems in plasma membranes and intracellular Ca2+ stores in intestinal epithelium. Biochem. Biophys. Acta. 902: 247-252.

    Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Maughan SC, Cobbett CS, Van Montagu M, Inze D, May MJ, Sung ZR (2000) The ROOT MERISTEMLESS1/ CADMIUM SENSITIVE2 gene defines a glutathione: dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12: 97-110.

    Vranová E, Inz é D, Van Breusegem F (2002) Signal transduction during oxidative
    stress. J. exp. bot. 53: 1227-1236.

    Wainwright SJ, Woolhouse HW (1977) Some physiological aspects of copper and zinc
    tolerance in Agrostis tenuis Sibth: cell elongation and membrane damage. J. exp. bot.
    28: 1029-1036.

    Wang H, Li J, Bostock RM, Gilchrist DG (1996) Apoptosis: a functional paradigm for
    programmed plant cell death induced by a host-selective phytotoxin and invoked during
    development. Plant Cell 8: 375-391.

    Wang M, Oppedijk BJ, Caspers MPM, Lamers GEM, Boot MJ, Geerlings DNG, Bakhuizen B, Meijer AH, Duijn BV (1998) Spatial and temporal regulation of DNA fragmentation in the aleurone of germinating barley. J. exp. bot. 49: 1293-1301.

    Weckx J, Clijsters H (1996) Oxidative damage and defense mechanisms in primary
    leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper.
    Physiol. Plant. 96: 506-512.

    Weigel HJ (1985) The effect of Cd2+ on photosynthetic reactions of mesophyll protoplasts. Physiol. Plant. 63: 192-200.

    Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10: 1539-1550.

    Yen CH, Yang CH (1998) Evidence for programmed cell death during leaf senescence in plants. Plant and cell physiol. 39: 922-927.

    Yousefi S, Green DR, Blaser K, Simon HU (1994) Protein-tyrosine phosphorylation regulates apoptosis in human eosinophils and neutrophils. Proc. Natl. Acad. Sci. USA 91: 10868-10872

    Zenk MH (1996) Heavy metal detoxification in higher plants-a review. Gene. 179: 21-30.

    Zhang S, Klessig D (1998) Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc. Natl. Acad. Sci. USA 95: 7433-7438

    Zhang S, Liu Y, and Klessig DF (2000) Multiple levels of tobacco WIPK activation during the induction of cell death by fungal elicitins. Plant J. 23 (3): 339-347.

    下載圖示 校內:2004-07-10公開
    校外:2004-07-10公開
    QR CODE