簡易檢索 / 詳目顯示

研究生: 林世偉
Lin, Shi-Wei
論文名稱: 設計及發展一套機器手臂系統模擬關節鬆動術
Design and Develop A Robotic Manipulator for Simulating Translational Mobilization Technique
指導教授: 張冠諒
Chang, Guan-Liang
蔡清元
Tsay, Tsing-Iuan
徐阿田
Hsu, Ar-Tyan
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 66
中文關鍵詞: 生物力學模擬關節鬆動術機器手臂
外文關鍵詞: robotic manipulator, translational mobilization, simulating, biomechnics
相關次數: 點閱:67下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為治療關節活動不良或夾擠症候群的患者,關節鬆動術是骨科物理治療師所廣泛使用的。而過去關於此的文獻也指出此治療術在施行和量測時總會遭遇到不同時段與不同測試者間之變異性過大的問題。其中臨床量測工具與物理治療師執行時所產生準確性與可信性不足的缺陷可由一高準確性與可重複性之機器手臂取代,以降低臨床研究時量測變數之變異性。
    因此,設計及發展一套機器手臂系統,用來模擬關節鬆動術是我們研究的最終的目的。而在目前的研究中,我們主要專注在設計與製造,並進行初步的測試。設計的過程中,除了決定機構形式、各軸扭矩、馬達容量以及各連桿的尺寸結構外,在製造的過程時,我們仍需不斷的解決突如其來的問題。而在初期的實驗中,主要是以機器手臂的測試和肩部關節試件為主,主要是為了印證我們所製造的機器人,其可行如何。而其中還有許多缺點尚需解決,在未來的研究中,我們會以控制系統的發展為主要的路線,進而應用在生物力學上。

    Mobilization techniques are frequently used by physical therapists, osteopaths and orthopedic surgeons to treat joints with limited range of motion (ROM) and impingement syndrome. However, the theories behind translational joint mobilization have not been proven empirically and more regarded as a therapeutic art rather than therapeutic science.
    Although clinical efficacy studies will provide the ultimate answer to the question shrouding the usefulness of the joint mobilization/manipulation techniques for joint hypomobility, however, it is plagued by numerous pitfalls and the resultant large inter-subject and inter-session variability. The source of error attributable to the examiner, however, could be reduced with the use of a robotic manipulator to simulate the movement of the therapist. The purpose of this research is to design and develop the robotic manipulator system to practice the translational mobilization technique.
    The design process, we need to validate the mechanism type, to decide the parameter about the torques in each joint, the mechanical structures and dimensions of each link, the transmission design, and all of the sensors in this robotic manipulator etc. Besides this, we must solve any thing about robot design when manufacturing the robotic manipulator. In the experiment, the robot test and specimen test are to prove that the robotic manipulator could be used in simulating the translational mobilization. In the future work, we will devote every effort to develop our control system.

    中 文 摘要..............I ABSTRATCT...............II 致 謝...................III CONTESTS................IV LIST OF TABLES..........VII LIST OF FIGIRES.........VI Chapter 1 Introduction....................................1 1.1 Joint Mobilization....................................2 1.2 Robotic Background and Development...................4 1.3 Robotic Manipulator in Biomechanics..................6 1.4 Motivation and Purpose...............................8 Chapter 2 Robotic Manipulator Design........................10 2.1 Robotic Design.......................................10 2.1.1 Introduction.........................................10 2.1.2 The Necessary for Translational Mobilization.........11 2.1.3 Joint Torque.........................................14 2.1.4 Motor Capacity.......................................17 2.1.5 Structure of Link....................................17 2.1.6 Transmission Type....................................18 2.1.7 Peripheral Sensor....................................18 2.2 Defining Coordinate and Analysis.....................19 2.3 Kinematic Equation...................................23 2.4 Inverse Kinematic Equation...........................25 Chapter 3 Material and Method...............................30 3.1 Robotic Manipulator System...........................30 3.1.1 Robotic Body.........................................31 3.1.2 System Box...........................................32 3.1.3 Interface System.....................................32 3.1.4 Universal Force Sensor...............................33 3.2 Universal Force Sensor Calibration...................36 3.3 Robotic Manipulator Test.............................38 3.4 Specimen Test........................................40 Chapter 4 Result and Discussion.............................43 4.1 The Robotic Manipulator..............................43 4.1.1 The Belt Transmission Device.........................43 4.1.2 The Robot Specifications.............................45 4.2 The Result of Universal Force Sensor Calibration.....49 4.3 The Robot Test.......................................51 4.4 The Specimen Test....................................55 Chapter 5 Conclusion and Future Work........................56 REFERENCES...................................................57 APPENDIX.....................................................61 自述 著作權聲明

    1. Threlkeld AJ. The effects of manual therapy on connective tissue. Phys Ther 1992;72:893-902.
    2. Simmonds MJ, Kumar S, Lechelt E. Use of a spinal model to quatify the forces and motion that occur during therapists’ tests of spinal motion. Phys Ther 1995;75:212-22.
    3. Lee M, Moseley A, Refshauge K. Effect of feedback on learning a vertebral joint mobilization. Phys Ther 1990; 70:97-102; discussion 103-4.
    4. Hsu AT, Ho L. Joint Position During Anterior-Posterior Glide Mobilization: Its effect on glenohumeral abduction range of motion. Arch Phys Med Rehabil 2000;81(2): 210-214.
    5. Hsu AT, Ho L. Immediate response of glenohumeral abduction range of motion to a caudally directed translational mobilization: a fresh cadaver simulation. Arch Phys Med Rehabil 2000;81(11):1511-1515.
    6. Hsu AT, Ho L. Characterization of tissue resistance during a dorsally directed translational mobilization of the glenohumeral joint. Arc Phys Med Rehabil 2002;83(3):360-366.
    7. Hsu AT, Hedman T. Changes in abduction and rotation range of motion in presponse to simulated dosal and ventral translational mobilization of the glenohumeral joint, Phys Ther 2002;82(6):544-556.
    8. Hsu AT, Chang JH. Determining the resting position of the glenohumeral joint: A cadaver study. J Orthop Phys Ther 2002;32(12):605-612.
    9. Fujie H, Livesay GA. The use of a universal force-moment sensor to determine in-situ forces in ligaments: A new methodology. J Biomech Eng 1995;117(2):1-7.
    10. Fujie H, Mabuchi K, The use of robotics technology to study human joint kinematics: A new methodology. J Biomech Eng 1993;115(8):211-217.
    11. Rudy TW, Livesay GA, Woo SL. A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. J Biomech 1996;29:1357-1360.
    12. Woo SL, Debski RE, Wong EK, Yagi M& Tarinelli D. Use of robotic technology for diathrodial joint research. J Sci & Med Spor 1999;2(4):283-297.
    13. McClure PW, Flower KR. Treatment of limited shoulder motion: A case study based on biomechanical considerations. Phy Ther 1992;72:929-936.
    14. Conroy DE, Hayes KW. The effect of joint mobilization as a component of comprehensive treatment for primary shoulder impingement syndrome. J Orthop Sports Phys Ther 1998;28:3-14.
    15. Ekelund AL, Rydell N. Combination of treatment for adhesive capsulitis of the shoulder. Clin Orthop 1992;282:105-109.
    16. Susan L. Edmond, Manipulation mobilization: extremity and spinal techniques. Mosby: St. Louis, 1993.
    17. Kaltenborn F. Manual Mobilization of the Extremity joints. Norway: Olaf Norlis Bokhandel;1989.
    18. Hurtling D, Kesller RM. Management of Common Musculoskeletal Disoreders-Physical Therapy Principles and Methods. 3rd edition, Philadelphia:Lippincott: 1996.
    19. Debski RE, Sakane M, Woo SL. Contribution of the passive properties of the rotator cuff to glenohumeral stability during anterior-posterior loading. J shoulder Elobw Surg 1999;8(4):324-329.
    20. Debski RE, Wong EK, Woo SL. In situ force distribution in the glenohumeral joint capsule during anterior-posterior loading. J Orthop Res 1999;17(5):769-776.
    21. Ahmed AM, Hyder A, Burke DL & Chan KH. In Vitro ligament tension pattern in the flexed knee in passive loading, J Ortho Res 1987;5,:217-230.
    22. Berns GS, Hull ML & Patterson HA. Implementation of a five degree of freedom automated system to determine knee flexibility in vitro, ASME J Biomech eng 1990;112:392-400.
    23. Buttermann GR, Kahmann RD, Lewis JL & Bradford DS. An experimental method for measuring force on the spinal facet joint: Description and application of the method, ASME J Biomech eng 1991;113:375-386.
    24. Bennett S. The Development of the PID Controller. IEEE Control systems 1993;12:58-64.
    25. Fu KS, Gonzalez RC, Lee GS. Robotics: Control, Sensing, Vision, and Intelligence. McGraw-Hill Book Company, 1987.
    26. Riddle D. Measurement of accessory motion: Critical issues and related concepts. Phys Ther 1992;72:865-874.
    27. Nordin M, Frankel VH. Basic Biomechanics of the Musculoskeletal System, Lippincott Williams & Wilkins, 2001.
    28. McQuad KJ, Shelley I, Cvitkovic J. Patterns of stiffness during clinical examination of the glenohumeral joint. Clin Biomech (Bristol, Avon).
    29. Denavit J & Hartenberg RS. A kinematic notation for lower-pair mechanisms based on matrices, J App Mech;77:215-221.
    30. Asada H & Slotine JE, Robot analysis and control, John Wiley & Sons, Inc. 1986.

    下載圖示 校內:2004-08-26公開
    校外:2004-08-26公開
    QR CODE