| 研究生: |
陳建男 Chen, Chien-Nan |
|---|---|
| 論文名稱: |
Black-Scholes評價模型下之預測波動率─以台指選擇權為例 Forecasting Volatility for Black-Scholes Option Pricing Model for TAIEX Options |
| 指導教授: |
王明隆
Wang, Ming-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融研究所 Graduate Institute of Finance |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 台指選擇權 、隱含波動率 、選擇權評價 |
| 外文關鍵詞: | Volatility, TXO, Option pricing |
| 相關次數: | 點閱:81 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的是使用波動率模型來計算台指選擇權的價格,並探討最適合評估台指選擇權價格之波動率模型。本研究使用歷史波動率、GARCH(1,1)、隱含波動率、Vega加權平均隱含波動率以及結合GARCH波動率和Vega加權隱含波動率計等六種波動率模型來估計波動率,再代入Black-Scholes選擇權評價模型計算其理論價格。接著藉由價格誤差衡量指標來衡量理論價格與市場價格之價差大小,最後配合迴歸分析,以找出評估績效表現最佳之波動率模型。實證結果如下:
1.不論是買權或賣權,隱含波動率模型通常比時間序列波動率模型的MAE、RMSE估計誤差值小。
2.以各模型來分析,隱含波動率為較佳的波動性模型,其中合GARCH波動率和Vega加權隱含波動率模型不論在任何組別下,幾乎都是誤差指標值最小的模型,但買權隱含波動率模型表現最差。
The purpose of this study is to estimate option prices by using alternative volatility models to find out which volatility model is the most suitable for evaluating the TXO. In this paper six models are used to estimate the volatility and the estimated value are incorporated into the Black-Scholes option pricing model to calculate the theoretical prices. Furthermore, the difference between the theoretical price and market price is calculated using the statistical error measures to find the optimum volatility model. The results show that (1) No matter call option or put option, the estimated statistical error of implied volatility model is smaller than time series volatility. (2) For all models, implied volatility is the better volatility model, above all, VGIV is the best model, but the implied volatility of call option is the worst model.
1.Akgiray, V. (1989), “Conditional Heteroskedasticity in Time Series of Stock Returns:Evidence and Forecasts,” Journal of Busniess, Vol 62, 55-80.
2.Beckers, S. (1981), “Standard Deviations Implied in Option Prices as Predictors of Future Stock Price Variability.” Journal of Banking and Finance, 5, 363-382.
3.Black, F. (1976), “The Pricing of Commodity Contracts,” Journal of Financial Economics, Vol 3, 167-179.
4.Black, F. and M. Scholes (1973), “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy, Vol 81, 637-659.
5.Bollerslev(1986), “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, Vol 31, 307-328.
6.Bollerslev, T., R. Chou and K. Kroner,,1992. ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence, Journal of Econometrics 52:1- 59
7.Brown, S. (1990), “Estimating Volatility,” in Figlewski S., W. L. Silber, and M.G. Subrahmanyam ed., Financial options : from theory to practice , Chicago : Irwin.
8.Canina, L. and S. Figlewski (1993), “The Informational Content of Implied Volatility,” Review of Financial Studies, Vol 6, 659-681.
9.Chiras, D. P. and S. Manaster, (1978), “The Information Content of Option Prices and a Test of Market Efficiency.” Journal of Financial Economics, 6, 213-234.
10.Christensen, B. J. and N. R. Prabhala (1998), “The Relation Between Implied and Realized Volatility,” Journal of Financial Economics, Vol 50, 125-150.
11.Chu, S.H. and S. Freund (1996), “Volatility Estimation for Stock Index Options: A GARCH Approach,” Quarterly Review of Economics and Finance, Vol 36, 431-450.
12.Cox, J., S. Ross, and M. Rubinstein (1979), “Option Pricing: A Simplified Approach” , Journal of Financial Economics, Vol.7, pp.229-264.
13.Day, T. E. and C. M. Lewis(1988), “The Behavior of the Volatility Implicit in the Prices of Stock Index Options,” Journal of Financial Economics Vol 22, 103-122.
14.Day, T. E. and C. M. Lewis(1992), “Stock Market Volatility and the Information Content of Stock Index Options,” Journal of Econometrics Vol 52, 267-287.
15.Donders, M. and T. Vorst (1996), “The Impact of Firm Specific News on Implied Volatilities,” Journal of Banking and Finance, Vol 20, 1447-1461.
16.Ederington, Louis and Wei. Guan(2002) ,” Why Are Those Options Smiling?,” Journal of Derivatives, 10,2 , p9-35.
17.Engle, R. F. (1982), “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of Untied Kingdom Inflation.” Econometrica, 50, 987-1007
18.Fair, Ray C., Shiller, Robert J(1990),” Comparing Information in Forecasts from Econometric Models,”The American Economic Review. Vol. 80, Iss. 3; p. 375
19.Feinstein, S. P. (1989), “Forecasting Stock Market Volatility Using Options on Index Futures,” Economic Review, Federal Reserve Bank of Atlanta, Vol 74, 12-30.
20.Fleming, J. (1998), “The Quality of Market Volatility Forecasts Implied by S&P 100 Index Option Prices,” Journal of Empirical Finance, Vol 5, 317-345.
21.Garman, Mark B. and M. J. Klass, (1980)“On the Estimation of Security Price Volatilities from Historical Data,”The Journal of Business, Vol.53, pp.67-78
22.Gemmill, G. (1986), “The Forecasting Performance of Stock Options on the London Traded Options Markets,” Journal of Business Finance and Accounting, Vol 13, 535-546.
23.Gwilym, O. A. and M. Buckle (1999), “Volatility Forecasting in the Framework of the Option Expiry Cycle,” European Journal of Finance, Vol 5, 73-94.
24.Harvey, C. R. and R. E. Whaley (1991), “S&P 100 Index Option Volatility,” Journal of Finance, Vol 46, 1551-1561.
25.Hull, J., and A. White, (1987), “The Pricing of Options on Assets with Stochastic Volatilities”, Journal of Finance, Vol. 42, pp.281-330, June.
26.Jorion, P. (1995), “Predicting Volatility in the Foreign Exchange Market,” Journal of Finance, Vol 50, 507-528.
27.Kroner, K. F. (1996), “Creating and Using Volatility forecasts,” Derivatives Quarterly, Vol 3, 39-53.
28.Lamoureux, C. and W. Lastrapes (1993), “Forecasting Stock-Return Variance: Toward An Understanding of Stochastic Implied Volatilities,” Review of Financial Studies, Vol 6, 293-326.
29.Latane, H. and R. J. Rendleman (1976), “Standard Deviations of Stock Price Ratios Implied in Option Prices,” Journal of Finance, Vol 31, 369-381.
30.Leland, Hayne E., (1985), Option pricing and replication with transactions costs, Journal of Finance 40, 1283-1301
31.Merton R. C. (1973), “Theory of Rational Option Pricing,” Bell Journal of Economics and Management Science, Vol 4, Spring , 141-183.
32.Nelson, D. B., (1991), “Conditional Heteroskedasticity in Asset Returns: A New Approach,” Econometrica, Vol. 59, pp. 347-370
33.Parkinson, M. (1980), "The Extreme Value Method for Estimating the Variance of the Rate of Return", J. Business, Vol.53, pp.61-66.
34.Rubinstein, M.(1985), “Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 Through August 31, 1978,” Journal of Finance, Vol 40, 455-480.
35.Schmalensee, R. and R. Trippi (1978), “Common Stock Volatility Expectations Implied by Option Premia,” Journal of Finance, Vol 33, 129-147.
36.Schwert, G. W. and Seguin, P. J. (1990), “Herteroscedasticity in Stock Returns,” Journal of Finance, Vol.45, pp.1129-1155.
37.Vasilellis, G. A. and N. Meade, (1996), “Forecasting Volatility for Portfolio Selection.” Journal of Business Finance and Accounting, 23, 125-143.
38.Whaley, R. E. (1982), “Valuation of American Call Options on Dividend-Paying Stocks,” Journal of Financial Economics, Vol 10, 29-58.
39.Wiggins, J.B. (1987), “Option Values under Stochastic Volatility: Theory and Empirical Evidence”, Journal Financial Economics, Vol.19, pp.351-372.