簡易檢索 / 詳目顯示

研究生: 劉哲全
Liu, Je-Chiuan
論文名稱: 線上PI控制器的模糊調諧策略
A Fuzzy On-Line Tuning Strategy for PI controllers
指導教授: 張珏庭
Chang, Chuei-Tin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 111
中文關鍵詞: 線上調諧模糊推論PI控制器
外文關鍵詞: PI controllers, Fuzzy, On-Line Tuning
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   為了改善傳統求取PI控制器參數設定的方法,在本研究中我們發展出了新的線上控制器調諧策略。具體而言,我們提出系統化的步驟來建構雙層式的模糊推論系統,以便鑑認干擾的來源及大小,再據以挑選適當的控制器參數。我們利用系統的有向圖模式,預測任一給定干擾所有可能出現的線上症候,並依此編譯成模糊診斷法則。至於控制器參數是根據上述失誤發生可能性指標來調整。由於控制器的動作是可以滿足各種不同干擾的需求,我們相信這樣的調諧策略應可以有效提升控制品質。而此一構想之可行性也在模擬案例中得到驗證。

     A novel on-line tuning strategy is developed in this work to enhance the control performance achieved by adopting the PI setting identified with any traditional method. Systematic procedures are devised for constructing a two-layer fuzzy inference system to diagnose the locations and magnitudes of disturbances, and also to select the appropriate controller parameters accordingly. The fuzzy diagnosis rules of a given disturbance are derived from all possible patterns of the resulting on-line symptoms and these patterns can be predicted on the basis of the system digraph model. The controller settings are then adjusted on-line according to the fault occurrence index. This tuning strategy is believed to be effective due to the fact that the controller actions can be tailored to satisfy the distinct needs of each and every frequently-occurred disturbance. Extensive simulation studies have been carry out to substantiate this proposition.

    中文摘要 I ABSTRACT III 致 謝 V 表 目 錄 IX 圖 目 錄 XI 第一章 緒 論            - 1 - 1.1研究動機                - 1 - 1.2研究目的                - 2 - 1.3文獻回顧                - 3 - 1.4組織與章節               - 6 - 第二章 模糊診斷方法           - 7 - 2.1 模糊推論架構             - 7 - 2.1.1 模糊診斷執行步驟         - 8 - 2.1.2 有向圖模式的建立         - 9 - 2.1.2 失誤樹的合成           - 10 - 2.1.3 最小切集合            - 11 - 2.1.4 症候發生順序           - 12 - 2.1.5 候選型式與IF-THEN模糊法則     - 14 - 2.1.6 線上應用              - 18 - 2.2 線上數據變化趨勢在模糊診斷上的應用 - 21 - 2.2.1 統計程序管制(SPC)         - 22 - 2.2.2 趨勢的定義             - 22 - 2.2.3 考慮趨勢的模糊診斷規則      - 24 - 2.3 系統震盪的鑑定           - 28 - 2.3.1 震盪的種類           - 28 - 2.3.2 震盪的特徵             - 29 - 2.3.3 雙層式推論架構          - 31 - 第三章 線上PI控制器調諧策略       - 35 - 3.1 線上干擾鑑認方法          - 35 - 3.1.1 直鏈狀系統之症候發生順序     - 35 - 3.1.2 具回饋迴路系統之症候發生順序   - 41 - 3.1.3 雙水槽系統的線上干擾鑑認步驟   - 43 - 3.2 線上調諧策略             - 61 - 3.2.1 控制器參數參考值的選擇      - 61 - 3.2.2 模糊調諧法則的訂定        - 63 - 3.2.3 模擬測試              - 65 - 3.3 案例研究               - 71 - 第四章 結論與展望            - 85 - 參考文獻                 - 87 - 附錄A: 單水槽系統模型          - 89 - 附錄B:                  - 91 - 附錄C:                  - 95 - 附錄D: 雙水槽系統模型          - 99 - 附錄E: 雙水槽線上控制器調諧的模擬程式  - 101 - 附錄F: 三水槽系統模型          - 109 - 自述 - 111 -

    Bhat, N. and McAvoy, T.J., 1990, “Use of Neural Nets for Dynamic Modeling and Control of Chemical Process Systems,” Comput. & Chem. Engng., 14, 573

    Chang, C. T., and Hwang, H. C., 1992, New Developments of the Digraph-Based Techniques for Fault-Tree Synthesis, I&EC Research, 31, 1490.

    Chang, C. T. and Hwang, K. S., 1994, “Studies on the Digraph-Based Approach for Fault-tree Synthesis. 1. The Ratio-Control Systems,” I&EC Research, 33.,1520.

    Chang, C. T., Hsu, D. S. and Hwang K. S., 1994, “Studies on the Digraph-Based Approach for Fault-Tree Synthesis. 2. The Trip Systems,” I&EC Research, 33, 1700.

    Chang, C. T., Mah, K. N., and Tsai, C. S., 1993, “A Simple Design Strategy for Fault Monitoring Systems,” AIChE Journal, 39, 1146.

    Chang, S. Y., Lin, C. R., Chang, C. T., and Yu, S. W., 2001, “On-line Fault Diagnosis Using Dynamic Fault Tree,’’ 4th IFAC workshop on On-line Fault Detection and Supervision in the Chemical Process Industries, Chejudo Island, Korea.

    Chang, S. Y., Lin, C. R., and Chang, C. T., 2002, “A Fuzzy Diagnosis Approach Using Dynamic Fault Tree,’’ Chem. Eng. Sci., 57, 2971.

    Chang, S. Y., and Chang C. T., 2003, “A Fuzzy-Logic Based Fault Diagnosis Strategy for Process Control Loops,’’ Chem. Eng. Sci., 58, 3395.

    Chen, C. L., 1989, “A Simple Method for On-Line Identification and Controller Tuning,” AIChE J., 35, 2037

    Chien, I.L. 1988, “IMC-PID Controller Design - An Extension”, Proceedings of the IFAC Symposium on Adaptive Control of Chemical Process, Copenhagen, Denmark, pp.147-152

    Dash, S., Rengaswamy, R., and Venkatasubramanian, V., 2003, “Fuzzy-Logic Based Trend Classification for Fault Diagnosis of Chemical Processes,” Comput. & Chem. Engng., 27, 347-362.

    Hwang, S. H. and Chang, H. C., 1987, “A Theoretical Examination of Closed-loop Properties and Tuning Methods of Single-loop PI controllers,” Chem. Engng. Sci., 42, 2395

    Ju, S.N., Chen, C. L., and Chang, C.T., 2004, “Constructing Fault Trees for Advanced Process Control Systems-Application to Cascade Control Loops,’’ IEEE Trans on RELIABILITY, 53, 43

    Lee, J., 1989, “On-Line PID Controller Tuning from a Single, Closed-Loop Test,” AIChE J., 35, 329

    Mathworks, 2002a. Fuzzy logic toolbox-user guid. The Mathworks Inc.

    Mathworks, 2002b. SIMULINK-dynamic system simulation for MATLAB-using simulink. The Mathworks Inc.

    Smith, C. A., and Corripio, A. B., 1997, “Principles And Practice of Automatic Process Control,” John Wiley & Sons, Inc., New York

    Tzafestas, S. and N. Papanikolopoulos,1990, “Incremental Fuzzy Expert PID Control,” IEEE Trans. On Ind. Electronics, 37, 365

    林政仁,2001,“動態失誤樹分析在線上失誤診斷上的應用”,成大化工所碩士論文

    張一岑,1995,“化工製程安全管理”,揚智文化事業股份有限公司,台北

    下載圖示 校內:立即公開
    校外:2005-07-05公開
    QR CODE