簡易檢索 / 詳目顯示

研究生: 林郁庭
Lin, Yu-Ting
論文名稱: 三維組織培養用多孔雙電性水凝膠之製備
Synthesis of Porous Polyampholyte Hydrogel Scaffold for 3-D Tissue Culture
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 88
中文關鍵詞: 雙電性水凝膠多孔支架細胞培養動態離子鍵
外文關鍵詞: polyampholyte, hydrogel, porous scaffold, cell culture, dynamic ionic bonding
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 通過動態離子鍵和永久性共價鍵的形成,成功構建了聚兩性電解質水凝膠。聚兩性電解質是由分佈無規則的陽離子和陰離子重複基團所組成,其離子鍵所形成的動態網絡為水凝膠提供了強大的機械性能,同時促進細胞在水凝膠中的遷移。水凝膠中還另外摻入含羥基的HEMA單體以改善含水量,此非離子單體會改變超分子結構,顯著影響所製備凝膠的物理性質。
    微結構研究結果表明,水凝膠中為高密度多孔結構,其平均孔徑為72-103 μm,此孔徑大小可增加生物分子的擴散效率。由適當配方所製備的水凝膠在生理條件下具有高含水量,穩定的熱性質和合適的機械性質。生物實驗的結果表明,PA/HEMA比例為 60 / 40、80 / 20和100/0水凝膠顯現出出色的細胞附著性,這歸因於水凝膠網絡內的靜電相互作用。其中,在80/20水凝膠中培養的NHDF和L929細胞保持較高的增殖能力和生存率,表明了PA水凝膠作為細胞外基質取代物的可行性。

    The polyampholyte hydrogel scaffolds were constructed successfully through the formation of dynamic ionic linkages and permanent covalent linkages. Polyampholytes are composed of randomly dispersed cationic and anionic repeating groups. The dynamic ionic network gives the hydrogels strong mechanical properties and promotes cell migration in the scaffold. HEMA containing hydroxyl group is incorporated to improve water content. Introducing of non-ionic units changes supramolecular construction and significantly affects the properties of the fabricated gels.
    The results of morphology study showed high density porous structure with average pore size of 72-103 μm, which improved biomolecule diffusion obviously. With proper formulations, the hydrogels possessed high water content, stable thermal properties and suitable mechanical properties under physiological conditions. The PA/HEMA-60/40, 80/20, and 100/0 hydrogels showed great cell attachment performance dependent on covalent and electrostatic interactions within the hydrogel network. Among them, the NHDF and L929 cells cultured on the PA/HEMA-80/20 hydrogel scaffolds showed a high viability and proliferative capacity, revealing that the PA hydrogels could provide possibility for extracellular matrix replacement.

    Contents Abstract I 中文摘要 II Contents III List of Tables VI List of Figures VII 1. Introduction 1 1-1 Preface 1 1-2 Research motivation 2 2. Literature Review 5 2-1 Introduction of Hydrogel 5 2-2 Classification of the Hydrogels 7 2-2-1 Physical and chemical hydrogels 9 2-2-2 Supramolecular polymeric hydrogels 13 2-3 Application of Hydrogels 22 2-4 Hydrogels for Tissue Engineering 30 3. Experiment 34 3-1 Materials 34 3-2 Instruments 35 3-3 Experimental section 36 3-3-1 Synthesis of Polyampholyte (PA) Hydrogel Scaffolds 36 3-3-2 Sample preparation for compressive test 40 3-3-3 SEM sample preparation 40 3-3-4 Solid State 13C-NMR Spectroscopy (SSNMR) 41 3-3-5 Measurement of Equilibrium Water Content (EWC) 41 3-3-6 Thermogravimetric analysis (TGA) for PA/HEMA hydrogels 42 3-3-7 Cell Culture and Proliferation 42 3-3-8 Adhesion Test and Biocompatibility Test of Polyampholytes Hydrogels 43 3-3-9 Immunostaining analysis 45 4. Results and Discussion 47 4-1 Characterization of the Hydrogel Scaffolds 47 4-1-1 Components Ratio of PA/HEMA Hydrogel Scaffolds 47 4-1-2 Structure Identification 48 4-1-3 Thermal Properties of the Hydrogels 52 4-1-4 Microstructure and Morphology of the Hydrogels 53 4-1-5 Water Content of Various Polyampholyte Hydrogels 60 4-1-6 Mechanical Behavior of the Hydrogels 62 4-2 Hydrogel as Extracellular Matrix Mimics for Cell Culture 65 4-2-1 Cell morphology 65 4-2-2 In Vitro Cell Adhesion Test 67 4-2-3 In Vitro Cell proliferation Test 72 4-2-4 In Vitro Cell Viability Test 76 5. Conclusions 82 References 83

    References

    1. E.M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review. J Adv Res, 2015. 6(2): p. 105-21.
    2. M.C. Hacker and H.A. Nawaz, Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine. Int J Mol Sci, 2015. 16(11): p. 27677-706.
    3. J.P. Vacanti and R. Langer, Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. The Lancet, 1999. 354: p. S32-S34.
    4. S.P. Nicolas L'heureux, Raymond Labbé, Lucie Germain, and François A. Auger, A completely biological tissue-engineered human blood vessel. FASEB J, 1998. 12(1): p. 47-56.
    5. N. L'Heureux, N. Dusserre, G. Konig, B. Victor, P. Keire, T.N. Wight, N.A. Chronos, A.E. Kyles, C.R. Gregory, G. Hoyt, R.C. Robbins, and T.N. McAllister, Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med, 2006. 12(3): p. 361-5.
    6. J. Yeh, Y. Ling, J.M. Karp, J. Gantz, A. Chandawarkar, G. Eng, J. Blumling, 3rd, R. Langer, and A. Khademhosseini, Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials, 2006. 27(31): p. 5391-8.
    7. Y. Si, J. Yu, X. Tang, J. Ge, and B. Ding, Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun, 2014. 5: p. 5802.
    8. T.Y. Lu, B. Lin, J. Kim, M. Sullivan, K. Tobita, G. Salama, and L. Yang, Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun, 2013. 4: p. 2307.
    9. T.J. Sill and H.A. von Recum, Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 2008. 29(13): p. 1989-2006.
    10. L. Yahia, History and Applications of Hydrogels. Journal of Biomedical Sciencies, 2015. 04(02).
    11. S.C. Lee, I.K. Kwon, and K. Park, Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev, 2013. 65(1): p. 17-20.
    12. F. Ullah, M.B. Othman, F. Javed, Z. Ahmad, and H. Md Akil, Classification, processing and application of hydrogels: A review. Mater Sci Eng C Mater Biol Appl, 2015. 57: p. 414-33.
    13. F. Raza, H. Zafar, Y. Zhu, Y. Ren, A. Ullah, A.U. Khan, X. He, H. Han, M. Aquib, K.O. Boakye-Yiadom, and L. Ge, A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers. Pharmaceutics, 2018. 10(1).
    14. T. Iizawa, H. Taketa, M. Maruta, T. Ishido, T. Gotoh, and S. Sakohara, Synthesis of porous poly (N‐isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. Journal of applied polymer science, 2007. 104(2): p. 842-850.
    15. L. Yang, J.S. Chu, and J.A. Fix, Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. International Journal of Pharmaceutics, 2002. 235(1): p. 1-15.
    16. Z. Maolin, L. Jun, Y. Min, and H. Hongfei, The swelling behavior of radiation prepared semi-interpenetrating polymer networks composed of polyNIPAAm and hydrophilic polymers. Radiation Physics and Chemistry, 2000. 58(4): p. 397-400.
    17. A.S. Hoffman, Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 2012. 64: p. 18-23.
    18. F. Lim and A.M. Sun, Microencapsulated islets as bioartificial endocrine pancreas. Science, 1980. 210(4472): p. 908-910.
    19. K. Nakamae, T. Miyata, A. Jikihara, and A.S. Hoffman, Formation of poly (glucosyloxyethyl methacrylate)-concanavalin A complex and its glucose-sensitivity. Journal of Biomaterials Science, Polymer Edition, 1995. 6(1): p. 79-90.
    20. A.M. Mathur, S.K. Moorjani, and A.B. Scranton, Methods for synthesis of hydrogel networks: A review. Journal of Macromolecular Science, Part C: Polymer Reviews, 1996. 36(2): p. 405-430.
    21. E. Caló and V.V. Khutoryanskiy, Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 2015. 65: p. 252-267.
    22. E.A. Appel, J. del Barrio, X.J. Loh, and O.A. Scherman, Supramolecular polymeric hydrogels. Chemical Society Reviews, 2012. 41(18): p. 6195-6214.
    23. G.M. Whitesides and B. Grzybowski, Self-assembly at all scales. Science, 2002. 295(5564): p. 2418-2421.
    24. A. Phadke, C. Zhang, B. Arman, C.C. Hsu, R.A. Mashelkar, A.K. Lele, M.J. Tauber, G. Arya, and S. Varghese, Rapid self-healing hydrogels. Proc Natl Acad Sci U S A, 2012. 109(12): p. 4383-8.
    25. T.L. Sun, T. Kurokawa, S. Kuroda, A.B. Ihsan, T. Akasaki, K. Sato, M.A. Haque, T. Nakajima, and J.P. Gong, Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nature materials, 2013. 12(10): p. 932-937.
    26. F. Luo, T.L. Sun, T. Nakajima, T. Kurokawa, Y. Zhao, K. Sato, A.B. Ihsan, X. Li, H. Guo, and J.P. Gong, Oppositely Charged Polyelectrolytes Form Tough, Self‐Healing, and Rebuildable Hydrogels. Advanced materials, 2015. 27(17): p. 2722-2727.
    27. H. Zhou, G. Xu, J. Li, S. Zeng, X. Zhang, Z. Zheng, X. Ding, W. Chen, Q. Wang, and W. Zhang, Preparation and self-healing behaviors of poly (acrylic acid)/cerium ions double network hydrogels. Macromolecular Research, 2015. 23(12): p. 1098-1102.
    28. E. Karadag, D. Saraydin, O. Guven, and M. Eng, Radiation induced superabsorbent hydrogels. Acrylamide/itaconic acid copolymers. Macromolecular Materials and Engineering, 2001. 286(1): p. 34-42.
    29. E. Karadaǧ, Ö.B. Üzüm, and D. Saraydin, Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels. European Polymer Journal, 2002. 38(11): p. 2133-2141.
    30. J.H. Ryu, Y. Lee, W.H. Kong, T.G. Kim, T.G. Park, and H. Lee, Catechol-Functionalized Chitosan/Pluronic Hydrogels for Tissue Adhesives and Hemostatic Materials. Biomacromolecules, 2011. 12(7): p. 2653-2659.
    31. O. Wichterle and D. Lim, Hydrophilic Gels for Biological Use. Nature, 1960. 185(4706): p. 117-118.
    32. P.S. Murphy and G.R. Evans, Advances in wound healing: a review of current wound healing products. Plast Surg Int, 2012. 2012: p. 190436.
    33. R. Narayanaswamy and V.P. Torchilin, Hydrogels and Their Applications in Targeted Drug Delivery. Molecules, 2019. 24(3).
    34. M.S. Chapekar, Tissue engineering: Challenges and opportunities. Journal of Biomedical Materials Research, 2000. 53(6): p. 617-620.
    35. J.A. Hunt, R. Chen, T. van Veen, and N. Bryan, Hydrogels for tissue engineering and regenerative medicine. Journal of Materials Chemistry B, 2014. 2(33): p. 5319.
    36. E.S. Place, J.H. George, C.K. Williams, and M.M. Stevens, Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev, 2009. 38(4): p. 1139-51.
    37. I.M. El-Sherbiny and M.H. Yacoub, Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob Cardiol Sci Pract, 2013. 2013(3): p. 316-42.
    38. R. Tiruvannamalai-Annamalai, D.R. Armant, and H.W. Matthew, A glycosaminoglycan based, modular tissue scaffold system for rapid assembly of perfusable, high cell density, engineered tissues. PLoS One, 2014. 9(1): p. e84287.
    39. R. Zeinali, E. Biazar, S.H. Keshel, M.R. Tavirani, and K. Asadipour, Regeneration of full-thickness skin defects using umbilical cord blood stem cells loaded into modified porous scaffolds. ASAIO J, 2014. 60(1): p. 106-14.
    40. S.B. Mahjour, X. Fu, X. Yang, J. Fong, F. Sefat, and H. Wang, Rapid creation of skin substitutes from human skin cells and biomimetic nanofibers for acute full-thickness wound repair. Burns, 2015. 41(8): p. 1764-1774.
    41. M.M. Fares and A.A. Othman, Lower critical solution temperature determination of smart, thermosensitiveN-isopropylacrylamide-alt-2-hydroxyethyl methacrylate copolymers: Kinetics and physical properties. Journal of Applied Polymer Science, 2008. 110(5): p. 2815-2825.
    42. A.R.L.T.S.M. Novak, TheT1r13C spin-lattice relaxation time of interpenetrating networks by solid state NMR. Solid State Communication, 1999. 109 (7): p. 465–470.
    43. M.P. Ajithkumar, M.P. Yashoda, and S. Prasannakumar, Synthesis, characterization, microstructure determination and thermal studies of poly(N-vinyl-2-pyrrolidone–maleic anhydride–styrene) terpolymer. Iranian Polymer Journal, 2013. 23(2): p. 93-101.
    44. K. Dušek. Phase separation during the formation of three‐dimensional polymers. in Journal of Polymer Science Part C: Polymer Symposia. 1967. Wiley Online Library.
    45. Q.L. Loh and C. Choong, Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev, 2013. 19(6): p. 485-502.
    46. Y.T. Hye-Won Kang, Yoshito Ikada, Fabrication of porous gelatin sca!olds for tissue engineering. Biomaterials, 1999. 20(14): p. 1339-1344.
    47. T.L. Sun, T. Kurokawa, S. Kuroda, A.B. Ihsan, T. Akasaki, K. Sato, M.A. Haque, T. Nakajima, and J.P. Gong, Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater, 2013. 12(10): p. 932-7.
    48. R.S. Wong, M. Ashton, and K. Dodou, Effect of Crosslinking Agent Concentration on the Properties of Unmedicated Hydrogels. Pharmaceutics, 2015. 7(3): p. 305-19.
    49. T.V. Chirila, Y.C. Chen, B.J. Griffin, and I.J. Constable, Hydrophilic sponges based on 2‐hydroxyethyl methacrylate. I. effect of monomer mixture composition on the pore size. Polymer International, 1993. 32(3): p. 221-232.
    50. K. A and L. A, Mechanical Behaviour of Skin: A Review. Journal of Material Science & Engineering, 2016. 5(4).
    51. N. Sachot, E. Engel, and O. Castano, Hybrid Organic-Inorganic Scaffolding Biomaterials for Regenerative Therapies. Current Organic Chemistry, 2014. 18(18): p. 2299-2314.
    52. L.G. Wade, Organic Chemistry 7th Edition. 2006.
    53. A.A. Khalili and M.R. Ahmad, A Review of Cell Adhesion Studies for Biomedical and Biological Applications. Int J Mol Sci, 2015. 16(8): p. 18149-84.
    54. L. Wang, D. Fan, W. Chen, and E.M. Terentjev, Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces. Sci Rep, 2015. 5: p. 15159.
    55. T.R. ELSDALE, Parallel Orientation Of Fibroblasts In Vitro. Experimental Cell Research, 1968. 51(2-3): p. 439-450
    56. H. Wang and S.C. Heilshorn, Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv Mater, 2015. 27(25): p. 3717-36.
    57. D.D. McKinnon, D.W. Domaille, J.N. Cha, and K.S. Anseth, Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv Mater, 2014. 26(6): p. 865-72.
    58. O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S.A. Bencherif, J.C. Weaver, N. Huebsch, H.P. Lee, E. Lippens, G.N. Duda, and D.J. Mooney, Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater, 2016. 15(3): p. 326-34.

    下載圖示 校內:2025-07-30公開
    校外:2025-07-30公開
    QR CODE