簡易檢索 / 詳目顯示

研究生: 曾俊怡
Tseng, Chun-Yi
論文名稱: 具非圓氣室輪廓之旋轉葉片式氣動機器
Rotary-Vane Air Machines Having Noncircular Chamber Profiles
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 93
中文關鍵詞: 葉片式氣動機器非圓輪廓扭矩特性轉速波動
外文關鍵詞: Rotary-vane air machines, noncircular profiles, torque characteristics, speed ripple
相關次數: 點閱:92下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用新型旋轉葉片式氣動馬達的理論分析與設計方法,透過非對稱與非圓形定子輪廓設計,改善傳統氣動馬達的輸出扭矩特性,使新型氣動馬達具有穩定的輸出性能與較佳的效率。氣動馬達具有機構簡單與高能量密度等優點,並使用壓縮空氣驅動,因此可應用在具有高揮發性氣體的化學工廠中,避免產生火花,防止爆炸,且氣動馬達內部壓力大於外部壓力,因此可在惡劣髒污的環境中使用。與其他旋轉機械相同,氣動馬達存在輸出扭矩波動的問題,此現象是由於一週期內各個葉片的輸出扭矩不能互相配合,導致總輸出扭矩產生波動。為了解決這個問題,本論文建立葉片式氣動馬達的解析模型,分析馬達扭矩變化的特性,並使用最佳化方法,設計單向的非圓形定子輪廓,藉由改變輪廓外形與膨脹比,改善氣動馬達的扭矩波動與輸出效率,並使用FLUENT建立馬達核心流域的模擬模型,模擬葉片產生的馬達扭矩。為了驗證新型馬達的可行性,藉由線切割、放電加工與研磨等方法製造定子,進行實作與實驗。本論文亦將非圓輪廓設計應用至空氣壓縮機的領域,設計具非圓氣室輪廓的新型空氣壓縮機,藉由改變輪廓外形,改善空氣壓縮機的驅動扭矩特性。本論文使用非圓輪廓設計方法,提高氣動馬達的輸出性能與效率,以及降低空氣壓縮機動力源的功率規格,期許能透過此設計方法,為業界減少能源浪費與成本開銷。

    This research presents the analysis and design of rotary-vane air motors having noncircular chamber profiles. Air motors produce very high specific power. They require compressed air rather than electricity; thus avoid sparks and can be used in demanding environments. Same as other types of rotary machines, air motors exhibit torque fluctuations. The varying torque curve is a result of unmatched torques generated by the vanes in one revolution. Torque fluctuations produce dynamic speed ripples that further introduce undesirable vibration. Rather than using auxiliary flywheels to smoothen the fluctuation, we use a new stator configuration that can help produce a nearly constant output torque. Meanwhile, the rotary-vane air motors can be more efficient by setting a reasonably higher expansion ratio for stator profile. A simulation model using FLUENT is also established to validate the result of analytical model. To validate the present designs, a new air motor is illustrated to show the speed ripples can be successfully reduced, while the efficiency can be increased. This research also presents the application of noncircular profile design in the field of air compressors, expect that the peak of driving torque can be reduced by using noncircular chamber profiles. Through this research, the noncircular profile design is expected to reduce energy wasting and costs.

    摘要 I ABSTRACT III 誌謝 V 目錄 VII 表目錄 XI 圖目錄 XII 符號說明 XV 第一章 介紹 1 1.1 氣動機器文獻回顧 1 1.1.1 氣動驅動器 1 1.1.2 壓縮機 5 1.2 研究動機 8 1.3 論文架構 9 第二章 具非圓氣室輪廓之氣動馬達分析與設計 11 2.1 前言 11 2.2 葉片式馬達解析模型 11 2.2.1 靜態扭矩模型 11 2.2.2 靜態輸出扭矩曲線分析 15 2.2.3 馬達動態模型 17 2.3 葉片式馬達效能改善設計 19 2.3.1 工作區間設計 19 2.3.2 高膨脹比定子輪廓設計 20 2.3.3 滾子葉片設計 25 2.4 葉片式馬達摩擦模型 26 2.5 本章小結 28 第三章 具圓形氣室輪廓之氣動馬達ANSYS模擬 29 3.1 前言 29 3.2 靜態模擬 29 3.2.1 馬達CAD模型與模擬操作流程 30 3.2.2 模型假設對馬達效能的影響 32 3.3 FLUENT模擬 34 3.3.1 UDF運作環境 35 3.3.2 模型與網格前處理 36 3.3.3 模擬操作流程 40 3.3.4 結果與討論 45 3.4 本章小結 48 第四章 具非圓氣室輪廓之氣動馬達實作與實驗 49 4.1 前言 49 4.2 實驗配置 49 4.3 實驗平台不完全軸對稱的影響 50 4.4 新型馬達的製造與組裝拆卸 51 4.5 摩擦扭矩與轉速的關係 55 4.6 轉速與效率實驗 56 4.7 本章小結 60 第五章 具非圓氣室輪廓之壓縮機分析與設計 61 5.1 前言 61 5.2 單葉片式壓縮機解析模型 61 5.2.1 滑動葉片式壓縮機模型 62 5.2.2 搖擺葉片式壓縮機模型 64 5.2.3 靜態驅動扭矩曲線分析 68 5.2.4 零件質量對驅動扭矩的影響 69 5.3 非圓壓縮機設計 70 5.3.1 新型SDV轉子輪廓最佳化 70 5.3.2 新型SWV定子輪廓最佳化 74 5.4 本章小結 80 第六章 結論與未來工作 81 6.1 結論 81 6.2 未來工作 82 參考文獻 85 自述 91 著作權 93

    [1] A. Barber, 1989, Pneumatic Handbook, Trade & Technical Press, Morden, Surrey, England.
    [2] T. Royston and R. Singh, 1993, “Development of a Pulse-Width Modulated Pneumatic Rotary Valve for Actuator Position Control,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 115, pp. 495-505.
    [3] J. Wang, J. Pu, and P. R. Moore, 1999, “A Practical Control Strategy for Servo-Pneumatic Actuator Systems,” Control engineering practice, Vol. 7, No. 12, pp. 1483-1488.
    [4] T. Vesselenyi, S. Dzitac, I. Dzitac, and M. Manolescu, 2007, “Fuzzy and Neural Controllers for a Pneumatic Actuator,” International Journal of Computers, Communications & Control, Vol. 2, No. 4, pp. 375-387.
    [5] M. Sorli, L. Gastaldi, E. Codina, and S. de las Heras, 1999, “Dynamic Analysis of Pneumatic Actuators,” Simulation Practice and Theory, Vol. 7, No. 5-6, pp. 589-602.
    [6] E. Richer and Y. Hurmuzlu, 2000, “A High Performance Pneumatic Force Actuator System: Part I-Nonlinear Mathematical Model,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 122, No. 3, pp. 416-425.
    [7] E. Richer and Y. Hurmuzlu, 2000, “A High Performance Pneumatic Force Actuator System: Part II- Nonlinear Controller Design,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 122, No. 3, pp. 426-434.
    [8] J. Pu, P. R. Moore, and R. H. Weston, 1991, “Digital Servo Motion Control of Air Motors,” International Journal of Production Research, Vol. 29, No. 3, pp. 599-618.
    [9] J. Wang, J. Pu, P. R. Moore, and Z. Zhang, 1998, “Modelling Study and Servo-Control of Air Motor Systems,” International Journal of Control, Vol. 71, No. 3, pp. 459-476.
    [10] S. R. Pandian, F. Takemura, Y. Hayakawa, and S. Kawamura, 1999, “Control Performance of an Air Motor-Can Air Motors Replace Electric Motors ?,” International Conference on Robotics & Automation, Detroit, Michigan, pp. 518-524.
    [11] X. Luo, J. Wang, L. Shpanin, N. Jia, G. Liu, and A. S. I. Zinober, 2008, “Development of a Mathematical Model for Vane-Type Air Motors with Arbitrary N Vanes,” Lecture Notes in Engineering and Computer Science, Vol. 2170, No. 1, pp. 362-367.
    [12] Y. Zhang and A. Nishi, 2003, “Low-Pressure Air Motor for Wall-Climbing Robot Actuation,” Mechatronics, Vol. 13, No. 4, pp. 377-392.
    [13] K. Suzumori, K. Hori, and T. Miyagawa, 1998, “A Direct-Drive Pneumatic Stepping Motor for Robots: Designs for Pipe-Inspection Microrobots and for Human-Care Robots,” International Conference on Robotics & Automation, Leuven, Belgium, Vol. 4, pp. 3047-3052.
    [14] D. Stoianovici, A. Patriciu, D. Petrisor, D. Mazilu, and L. Kavoussi, 2007, “A New Type of Motor: Pneumatic Step Motor,” IEEE/ASME Transactions on Mechatronics, Vol. 12, No. 1, pp. 98-106.
    [15] Y. T. Shen and Y. R. Hwang, 2008, “Design and Implementation of an Air-Powered Motorcycles,” Applied Energy, Vol. 86, No. 7-8, pp. 1105-1110.
    [16] P. Fairley, 2009, “Driving on Air”, IEEE Spectrum, Vol. 46, No. 11, pp. 30-35.
    [17] 鐘三源,含一控制葉片之旋轉式壓縮機之最佳化設計,國立台灣大學機械工程研究所碩士論文,九十四年七月。
    [18] K. T. Ooi and T. N. Tong, 1997, “A Computer Simulationofa Rotary Compressorfor Household Refrigerators,” Applied Thermal Engineering, Vol. 17, No. 1, pp. 65-78.
    [19] K. T. Ooi, 2005, “Design Optimization of a Rolling Piston Compressor for Refrigerators,” Applied Thermal Engineering, Vol. 25, No. 5-6, pp. 813-829.
    [20] K. T. Ooi and H. Q. Lee, 2008, “Multi-Objective Design Optimization of a Rotary Compressor for household Air-Conditioning,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Vol. 222, No. 4, pp. 241-250.
    [21] G. Prater Jr., 2002, “Computer Modeling and Simulation of Stationary-Vane, Rolling Piston Refrigeration Compressors,” Computer Modeling in Engineering & Sciences, Vol. 3, No. 3, pp. 299-312.
    [22] Y. C. Park, 2010, “Transient Analysis of a Variable Speed Rotary Compressor,” Energy Conversion and Management, Vol. 51. No. 2, pp. 277-287.
    [23] Y. M. Huang and Y. F. Chiou, 1998, “Performanceand Dynamicsofa Rotary Compressorwitha Composite Stator Inner Contour,” ASME FEDSM 98-4856, Washington, D.C., pp. 1-8.
    [24] Y. M. Huang and S. A. Yang, 2008, “A Measurement Method for Air Pressures in Compressor Vane Segments,” Measurement, Vol. 41, No. 8, pp. 835-841.
    [25] Y. M. Huang and S. N. Tsay, 2009, “Mechanical Efficiency Optimization of a Sliding Vane Rotary Compressor,” Journal of Pressure Vessel Technology, Vol. 131, No. 6, pp. 1-8.
    [26] Y. Chen, N. P. Halm, E. A. Groll, and J. E. Braun, 2002, “Mathematical Modeling of Scroll Compressors-Part I Compression Process Modeling,” International Journal of Refrigeration, Vol. 25, No. 6, pp. 731-750.
    [27] Y. Chen, N. P. Halm, J. E. Braun, and E. A. Groll, 2002, “Mathematical Modeling of Scroll Compressors-Part II Overall Scroll Compressor Modeling,” International Journal of Refrigeration, Vol. 25, No. 6, pp. 751-764.
    [28] K. T. Ooi and J. Zhu, 2004, “Convective Heat Transfer in a Scroll Compressor Chamber: A 2-D Simulation,” International Journal of Thermal Sciences, Vol. 43, No. 7, pp. 677-688.
    [29] K. Jang and S. Jeong, 2006, “Experimental Investigation on Convective Heat Transfer Mechanism in a Scroll Compressor,” International Journal of Refrigeration, Vol. 29, No. 5, pp. 744-753.
    [30] C. H. Tseng and Y. C. Chang, 2006, “Family Design of Scroll Compressors with Optimization,” Applied Thermal Engineering, Vol. 26, No. 10, pp. 1074-1086.
    [31] Y. Liu, C. Hung, and Y. Chang, 2009, “Design Optimization of Scroll Compressor Applied for Frictional Losses Evaluation,” International Journal of Refrigeration, Vol. 33, No. 3, pp. 615-624.
    [32] Y. G. Liu, C. H. Hung, and Y. C. Chang, 2009, “Mathematical Model of Bypass Behaviors Used in Scroll Compressor,” Applied Thermal Engineering, Vol. 29, No. 5-6, pp. 1058-1066.
    [33] Y. L. Teh and K. T. Ooi, 2008, “Theoretical Study of a Novel Refrigeration Compressor-Part I: Design of the Revolving Vane (RV) Compressor and Its Frictional Losses,” International Journal of Refrigeration, Vol. 32, No. 5, pp. 1092-1102.
    [34] Y. L. Teh, K. T. Ooi, and D. W. Djamari, 2008, “Theoretical Study of a Novel Refrigeration Compressor-Part II: Performance of a Rotating Discharge Valve in the Revolving Vane (RV) Compressor,” International Journal of Refrigeration, Vol. 32, No. 5, pp. 1103-1111.
    [35] Y. L. Teh and K. T. Ooi, 2009, “Theoretical Study of a Novel Refrigeration Compressor-Part III: Leakage Loss of the Revolving Vane (RV) Compressor and a Comparison with That of the Rolling Piston Type,” International Journal of Refrigeration, Vol. 32, No. 5, pp. 945-952.
    [36] Y. L. Teh and K. T. Ooi, 2009, “Experimental Study of the Revolving Vane (RV) Compressor,” Applied Thermal Engineering, Vol. 29, No. 14-15, pp. 3235-3245.
    [37] H. Zhou, Z. Qu, H. Yang, and B. Yu, 2009, “Dynamic Model and Numerical Simulation for Synchronal Rotary Compressor,” Journal of Fluids Engineering, Vol. 131, No. 4, pp. 1-9.
    [38] K. T. Ooi, 2004, “Simulation of a Piezo-Compressor,” Applied Thermal Engineering, Vol. 24, No. 4, pp. 549-562.
    [39] I. Husain and M. Ehsani, 1996, “Torque Ripple Minimization in Switched Reluctance Motor Drives by PWM Current Control,” IEEE Transactions on Power Electronics, Vol. 11, No. 1, pp. 83-88.
    [40] Y. S. Lai and J. H. Chen, 2001, “A New Approach to Direct Torque Control of Induction Motor Drives for Constant Inverter Switching Frequency and Torque Ripple Reduction,” IEEE Transactions on Energy Conversion, Vol. 16, No. 3, pp. 220-227.
    [41] K. T. Chau, Q. Sun, Y. Fan, and M. Cheng, 2005, “Torque Ripple Minimization of Doubly Salient Permanent-Magnet Motors,” IEEE Transactions on Energy Conversion, Vol. 20, No. 2, pp. 352-358.
    [42] 鄭程維,最小化扭矩漣漪之葉片式氣動馬達設計,國立成功大學機械工程研究所碩士論文,一百年三月。
    [43] K. J. Landhuis, 2010, Slippers for Rollers in a Roller Vane Pump, U. S. Patent.
    [44] TADC. Available: http://techlink.cadmen.com/song/QA/XP64_UDF_compile.pdf
    [45] TADC. Available: http://www.cfd-online.com/Wiki/Turbulence_intensity
    [46] Y. C. Park, 2010, “Transient analysis of a variable speed rotary compressor,” Energy Conversion and Management, Vol. 51, pp. 277-287.
    [47] ECOVAC. Available: http://www.ecovac.com.tw/rotary_vane_compressors_oil-free.html

    下載圖示 校內:2019-01-21公開
    校外:2019-01-21公開
    QR CODE