| 研究生: |
鄭凱元 Cheng, Kai-Yuan |
|---|---|
| 論文名稱: |
基於ARM平台之MicroC/OS-II移植與乙太網路驅動程式之實現 Porting of MicroC/OS-II and Implementation of an Ethernet Driver on an ARM Platform |
| 指導教授: |
張大緯
Chang, Da-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | ARM Cortex-A8 、快速乙太網路 、MicroC/OS-II 、直接記憶體存取 |
| 外文關鍵詞: | ARM Cortex-A8, Fast Ethernet, MicroC/OS-II, DMA |
| 相關次數: | 點閱:169 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們移植了MicroC/OS-II至基於ARM Cortex-A8 CPU之平台。此外,亦撰寫了基於乙太網路晶片LAN9215的驅動程式。乙太網路驅動程式有不同傳輸模式,在此論文中,我們撰寫實現不同傳輸模式並進行不同模式間效能之比較。
實驗結果顯示,在較大封包情況下,利用直接記憶體存取的傳輸模式效能會較佳;而在封包極小時,使用直接記憶體存取的效能卻可能會較使用Interrupt或者是Polling機制來得差。在理論頻寬上限為100Mbps的快速乙太網路上,本論文的實作傳輸速度可達79.6Mbps。在程式大小方面,整份移植完成,包含乙太網路驅動程式,之MicroC/OS-II程式碼大小約為65 Kbytes。
In this thesis, we describe the porting of MicroC/OS-II to the Samsung S5PC100 platform, which is a platform based on ARM Cortex-A8. In addition, we also describe an Ethernet drive implementation based on the LAN9215 Fast Ethernet chip. Different transmission modes have been implemented in the Ethernet driver, and the performance of these modes has been compared in this thesis.
According to the performance results, the performance of the mode based on Direct Memory Access (DMA) has better performance than the other modes when the packet size is large. However, the mode using DMA results in worse performance than the modes using the Interrupt or Polling mechanisms when the packet size is small. The evauation result shows that the implemented Ethernet driver have the maximum peformance of 79.6Mbps. The size of the MicroC/OS-II kernel and the implmeneted Ethernet driver is about 65 Kbytes, which is quite small for many today’s embedded systems.
[1] C. S. Draper and MIT Instrumentation Laboratory,” Apollo Guidance Computer,” [Online] Available: http://ed-thelen.org/comp-hist/vs-mit-apollo-guidance.html#Other-information
[2] Apple Incorporation, ”The iPhone Series,” [Online] Available:
http://www.apple.com/iphone/
[3] Intel Corporation, Intel® Microcontrollers. [Online] Available:
http://www.intel.com/design/embcontrol/index.htm#51/251
[4] Microchip Technology Corporation, PIC® Microcontrollers. [Online] Available: http://www.microchip.com/pic/
[5] Atmel Corporation, Atmel® AVR® 8- and 32-bit microcontrollers. [Online] Available: http://www.atmel.com/products/microcontrollers/
[6] S. –T. Yen, “Exploiting High Speed FPGA Interconnect to Improve Performance of Message Passing,” Master Thesis, Institute of Computer Science and Information Engineering, National Cheng-Kung University, Tainan, Taiwan, July 2011.
[7] Jean J. Labrosse, “MicroC/OS-II: The Real-Time Kernel Second Edition,” Micrium, Inc, Feburary 2002.
[8] Wind River, Wind River VxWorks. [Online] Available: http://windriver.com/products/vxworks/.
[9] Samsung Electronics, S5PC100 REV 1.04, DataSheet, [Online] Available: http://www.datasheetdir.com/S5PC100+download, December 2009.
[10] ARM Ltd, ARM Cortex-A8 Processor, DataSheet, [Online] Available: http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K_cortex_a8_r3p2_trm.pdf.
[11] SMSC Corporation, LAN9215, DataSheet, [Online] Available: http://www.smsc.com/media/Downloads_Public/Data_Sheets/9215.pdf.
[12] W. -Y. Tai, ”A Portable SMP Module Design on uC/OS-II,” Master Thesis, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, July 2009.
[13] S. -F. Lin, S. -B. Zheng, X. -X. Jiang, “The Porting of Real-Time Operating System uC/OS-II on MCS-51 Series of MCU,” International Conference on Measuring Technology and Mechatronics Automation, pp.418-420, Hunan, China, April 2009.
[14] S. Nordström, L. Lindh, L. Johansson, T. Skoglund, “Application Specific Real-Time Microkernel in Hardware,” 14th IEEE-NPSS Real Time Conference, pp.333-336, June 2005.
[15] Y. -B. Qu, J. -Y. Su, L. -G. Feng, “Design and Implementation of RTU based on the Embedded Operation System uC/OS-II,” Proceedings of the IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies (DRPT), pp.623-626, Hong Kong, April 2004.
[16] K. -B. Wang, P. Li, J. -K. Liu, D. -Y. Ning, “Application of μC/OS-II in the Design of Mine DC Electrical Prospecting Instrument,” Xi'an International Conference on Fine Exploration and Control of Water & Gas in Coal Mines, pp.485~492, Xi’an, China, October 2011.
[17] Q. -C. Yang, Y. -L. Chen, L. -P. Ye, “A New Design of Mine Selective Leakage Protector Based on Advanced RISC Machine Cortex-M3,” Journal of Procedia Engineering, Vol. 15, pp.496-500, December 2011.
[18] S. -M. Guo, J. -Y. Wu, M. -Z. Xinag, S. -W. Wei, “Study of control system for X-ray generator,” Journal of Procedia Engineering, Vol. 7, pp.209-212, December 2010.
[19] H. Li, Q. Hu, P. -F. Zhang, Z. -G. Gao, “A method to improve interrupt latency in realtime OS kernels,” Journal of Embedded Computing, Vol. 4, No. 1, pp.37-45, January 2011.
[20] G. Ugurel, C. F. Bazlamaçc, “Context Switching Time and Memory Footprint Comparison of Xilkernel and μC/OS-II on MicroBlaze,” 7th International Conference on Electrical and Electronics Engineering (ELECO), pp.62-65, December 2011.