簡易檢索 / 詳目顯示

研究生: 陳信宇
CHEN, HSIN-YU
論文名稱: 單層銻原子在碲化銻之邊緣態研究
Edge State of Monolayer Antimonene on Sb2Te3
指導教授: 黃榮俊
Huang, J.C.A.
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 62
中文關鍵詞: 拓撲絕緣體單層銻烯掃描穿隧顯微镜X 射線光電子能譜學
外文關鍵詞: Topological Insulator, Antimonene, Scanning Tunneling Microscopy, X-ray Photoemission Spectroscopy
相關次數: 點閱:46下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,我們利用新穎的方式氫原子蝕刻三維拓樸絕緣體碲化銻塊材來製備單層銻烯。

    從STM 可觀察表面結構的變化,發現低曝氫量的蝕刻時,主要是對於台階邊緣和最外層的碲原子進行蝕刻。當增加曝氫量蝕刻後,可發現表面形成新的大平台,並可在觀察到雙層銻的原子排列結構。

    在電子特性上,拓樸絕緣體表面態轉變成單層銻烯。在樣品表面成分組成上,發現隨著曝氫量蝕刻增加,表面碲含量減少,而使銻金屬鍵結增加。

    因此證實利用top-down 的方式,可以製備出單層銻烯。

    In this research, two-dimensional(2D) Antimonene structure is prepared on Antimony(III)-Telluride(Sb2Te3) crystal by atomic hydrogen dosing. With over 10000L of hydrogen dosing, the new 500pm platform appeared at the surface and the atomic arrangement structure of double Antimonene was observed. The transformation of surface morphology is observed by using Scanning Tunneling Microscopy (STM). On the other hands, the electronic properties of Sb2Te3 topological surface state turn into the metallic-liked state after hydrogen dosing, which can be observed by Scanning Tunneling Spectroscopy (STS). The direct evidence of Antimonene band structure is observed by Angle-Resolved Photoemission Spectroscopy(ARPES). The comparison between the reduction of Sb-Te bonding and intensification of Sb-Sb bonding is confirmed by Core level Spectroscopy(CLS). The evidence of the edge state was constructed by the technic of the STS mapping. Our results present the top-down approach to preparing the hetero-interface between Antimonene and Sb2Te3.

    摘要 i Abstract ii Acknowledgements iii Contents iv List of Figures vi Chapter I. Introduction 1 I.i. From Quantum Hall effect to Quantum Spin Hall effect . . . . . . . . . . . 1 I.ii. Topological Protection of the Helical Edge State . . . . . . . . . . . . . . . 2 I.iii. Quantum Spin Hall Insulator . . . . . . . . . . . . . . . . . . . . . . . . . 4 I.iii.a. Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 I.iii.b. HgTe/CdTe Quantum Well Structures . . . . . . . . . . . . . . . . 5 I.iv. Two Dimensional X-ene Sheets . . . . . . . . . . . . . . . . . . . . . . . . 7 I.iv.a. Tunable topological electronic structures in Sb(111) bilayers: A firstprinciples study[1] . . . . . . . . . . . . . . . . . . . . . . . . . . 8 I.v. The Growth of Monolayer Antimonene . . . . . . . . . . . . . . . . . . . 11 I.v.a. Epitaxial Growth and Air-Stability of Monolayer Antimonene on PdTe2[2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 I.v.b. Epitaxial Growth of Flat Antimonene Monolayer: A New Honeycomb Analogue of Graphene[3] . . . . . . . . . . . . . . . . . . . . . . 13 I.v.c. Epitaxial growth of highly strained antimonene on Ag(111)[4] . . . . 14 I.v.d. Topological phase transition and quantum spin Hall edge states of antimony few layers - Sb film growth on Bi2Te2Se[5] . . . . . . . . 18 I.vi. Edge State Measurement by STM . . . . . . . . . . . . . . . . . . . . . . 19 I.vi.a. One-dimensional topological edge states of bismuth bilayers[6] . . . 19 I.vi.b. Topological phase transition and quantum spin Hall edge states of antimony few layers - Local electronic structure of Sb(111) films on Bi2Te2Se[5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 I.vii. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Chapter II. Theoretical Aspects of Instrumentation 28 II.i. The Scanning Tunneling Microscope . . . . . . . . . . . . . . . . . . . . . 28 II.ii. The concept of tunneling-Transmission coefficient[7] . . . . . . . . . . . . 30 II.iii. Theory of STM - Beyond Topography[8] . . . . . . . . . . . . . . . . . . 32 II.iv. Tunneling Hamiltonian Approach[8] . . . . . . . . . . . . . . . . . . . . 33 II.v. Modeling the Tip[8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 II.vi. Tunneling Spectroscopy-Quantitative Theory[8] . . . . . . . . . . . . . . 35 iv II.vii. Modulation techniques: STM[8] . . . . . . . . . . . . . . . . . . . . . . 35 II.vii.a. Experimental Techniques . . . . . . . . . . . . . . . . . . . . . . 35 II.vii.b. Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 II.viii. Experimental Application of STS . . . . . . . . . . . . . . . . . . . . . 39 Chapter III. Experimental Equipment 41 III.i. JEOL JSPM-4500A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 III.ii. Preparation of STM Tip . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 III.iii. Hydrogen Gas Cracker . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 III.iv. The Soft X-ray Photoemission Spectroscopy . . . . . . . . . . . . . . . . 45 III.v. Crystal growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Chapter IV. Results and Discussion 47 Chapter V. Conclusion 57 References 58

    [1] F.-C. Chuang, C.-H. Hsu, C.-Y. Chen, Z.-Q. Huang, V. Ozolins, H. Lin, and A. Bansil,
    Applied Physics Letters 102, 022424 (2013), 10.1063/1.4776734 .
    [2] W. Xu, S. Yan, L. Hang, F. Zili, W. YeLiang, S. JiaTao, LiuChen, W. JiaOu,
    L. ZhongLiu, Z. ShiYu, W. YuQi, D. ShiXuan, S. YouGuo, I. Kurash, and G. HongJun,
    Advanced Materials 29, 1605407, 10.1002/adma.201605407 .
    [3] Y. Shao, Z.-L. Liu, C. Cheng, X. Wu, H. Liu, C. Liu, J.-O. Wang, S.-Y. Zhu, Y.-Q.
    Wang, D.-X. Shi, K. Ibrahim, J.-T. Sun, Y.-L. Wang, and H.-J. Gao, Nano Letters 18,
    2133 (2018), pMID: 29457727, 10.1021/acs.nanolett.8b00429 .
    [4] Y.-H. Mao, L.-F. Zhang, H.-L. Wang, H. Shan, X.-F. Zhai, Z.-P. Hu, A.-D. Zhao, and
    B. Wang, Frontiers of Physics 13 (2018), 10.1007/s11467-018-0757-3.
    [5] S. H. Kim, K.-H. Jin, J. Park, J. S. Kim, S.-H. Jhi, and H. W. Yeom, Scientific Reports
    6 (2016), 10.1038/srep33193.
    [6] I. K. Drozdov, A. Alexandradinata, S. Jeon, S. Nadj-Perge, H. Ji, R. J. Cava, B. A.
    Bernevig, and A. Yazdani, Nature Physics 10, 664 (2014).
    [7] C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press,
    2007).
    [8] D. Bonnell, Scanning Tunneling Microscopy and Spectroscopy: Theory, Techniques,
    and Applications (Wiley-VCH, 1993).
    [9] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
    [10] X.-L. Qi and S.-C. Zhang, Physics Today 63, 33 (2010).
    [11] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
    [12] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).
    [13] D. Bercioux, N. Goldman, and D. F. Urban, Phys. Rev. A 83, 023609 (2011).
    [14] C. Xu and J. E. Moore, Phys. Rev. B 73, 045322 (2006).
    [15] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
    [16] C. Wu, B. A. Bernevig, and S.-C. Zhang, Phys. Rev. Lett. 96, 106401 (2006).
    [17] B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).
    [18] M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi,
    and S.-C. Zhang, Science 318, 766 (2007).
    [19] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
    57
    [20] G. E. Volovik and V. M. Yakovenko, Journal of Physics: Condensed Matter 1, 5263
    (1989).
    [21] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
    [22] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
    [23] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
    [24] D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. B 74, 155426 (2006).
    [25] H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald,
    Phys. Rev. B 74, 165310 (2006).
    [26] J. C. Boettger and S. B. Trickey, Phys. Rev. B 75, 121402 (2007).
    [27] Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, and Z. Fang, Phys. Rev. B 75, 041401 (2007).
    [28] M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian, Phys. Rev. B
    80, 235431 (2009).
    [29] R. Dornhaus, G. Nimtz, and B. Schlicht, Narrow-Gap Semiconductors (Springer Berlin
    Heidelberg, 1983).
    [30] M. Büttiker, Phys. Rev. B 38, 9375 (1988).
    [31] S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, Phys. Rev. Lett. 102,
    236804 (2009).
    [32] Z. Zhu and D. Tománek, Phys. Rev. Lett. 112, 176802 (2014).
    [33] S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Angewandte Chemie International
    Edition 54, 3112 (2015).
    [34] L. Cheng, H. Liu, X. Tan, J. Zhang, J. Wei, H. Lv, J. Shi, and X. Tang, The Journal of
    Physical Chemistry C 118, 904 (2014), https://doi.org/10.1021/jp411383j .
    [35] K. S. Novoselov, Science 306, 666 (2004).
    [36] G. Pizzi, M. Gibertini, E. Dib, N. Marzari, G. Iannaccone, and G. Fiori, Nature Communications
    7, 12585 (2016).
    [37] X. Chen, Q. Yang, R. Meng, J. Jiang, Q. Liang, C. Tan, and X. Sun, Journal of Materials
    Chemistry C 4, 5434 (2016).
    [38] M. Zhao, X. Zhang, and L. Li, Scientific Reports 5 (2015), 10.1038/srep16108.
    [39] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
    [40] B. Zhou, B. Zhou, D. Tang, and G. Zhou, Journal of Applied Physics 115, 154310
    (2014), https://doi.org/10.1063/1.4871683 .
    [41] H.-Z. Lu, W.-Y. Shan, W. Yao, Q. Niu, and S.-Q. Shen, Phys. Rev. B 81, 115407 (2010).
    58
    [42] C.-X. Liu, H. Zhang, B. Yan, X.-L. Qi, T. Frauenheim, X. Dai, Z. Fang, and S.-C.
    Zhang, Phys. Rev. B 81, 041307 (2010).
    [43] S. Murakami, Phys. Rev. Lett. 97, 236805 (2006).
    [44] M. Wada, S. Murakami, F. Freimuth, and G. Bihlmayer, Phys. Rev. B 83, 121310
    (2011).
    [45] G. Bian, T. Miller, and T.-C. Chiang, Phys. Rev. Lett. 107, 036802 (2011).
    [46] K. Gawarecki and P. Machnikowski, Phys. Rev. B 85, 041305 (2012).
    [47] T. Noakes, D. Hutt, C. McConville, and D. Woodruff, Surface Science 372, 117 (1997).
    [48] L. Moreschini, A. Bendounan, I. Gierz, C. R. Ast, H. Mirhosseini, H. Höchst, K. Kern,
    J. Henk, A. Ernst, S. Ostanin, F. Reinert, and M. Grioni, Phys. Rev. B 79, 075424
    (2009).
    [49] I. Gierz, B. Stadtmüller, J. Vuorinen, M. Lindroos, F. Meier, J. H. Dil, K. Kern, and
    C. R. Ast, Phys. Rev. B 81, 245430 (2010).
    [50] G. Yao, Z. Luo, F. Pan, W. Xu, Y. P. Feng, and X. sen Wang, Scientific Reports 3 (2013),
    10.1038/srep02010.
    [51] J. Seo, P. Roushan, H. Beidenkopf, Y. S. Hor, R. J. Cava, and A. Yazdani, Nature 466,
    343 (2010).
    [52] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Applied Physics Letters 40, 178 (1982),
    https://doi.org/10.1063/1.92999 .
    [53] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).
    [54] G. Binnig and H. Rohrer, Surface Science 126, 236 (1983).
    [55] Y.-L. Wang, H.-M. Guo, Z.-H. Qin, H.-F. Ma, and H.-J. Gao, “Toward a detailed understanding
    of si(111)- surface and adsorbed ge nanostructures: Fabrications, structures,
    and calculations,” (2008).
    [56] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 50, 120 (1983).
    [57] N. García, C. Ocal, and F. Flores, Phys. Rev. Lett. 50, 2002 (1983).
    [58] E. Stoll, A. Baratoff, A. Selloni, and P. Carnevali, Journal of Physics C: Solid State
    Physics 17, 3073 (1984).
    [59] N. D. Lang, Phys. Rev. B 36, 8173 (1987).
    [60] N. D. Lang, A. Yacoby, and Y. Imry, Phys. Rev. Lett. 63, 1499 (1989).
    [61] J. Bardeen, Phys. Rev. Lett. 6, 57 (1961).
    [62] J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985).
    59
    [63] J. Tersoff and D. R. Hamann, Phys. Rev. Lett. 50, 1998 (1983).
    [64] N. D. Lang, Phys. Rev. B 34, 5947 (1986).
    [65] J. A. Stroscio, R. M. Feenstra, and A. P. Fein, Phys. Rev. Lett. 57, 2579 (1986).
    [66] J. Tersoff, Phys. Rev. B 40, 11990 (1989).
    [67] G. Binnig, K. H. Frank, H. Fuchs, N. Garcia, B. Reihl, H. Rohrer, F. Salvan, and A. R.
    Williams, Phys. Rev. Lett. 55, 991 (1985).
    [68] G. Binnig, H. Rohrer, F. Salvan, C. Gerber, and A. Baro, Surface Science 157, L373
    (1985).
    [69] R. S. Becker, J. A. Golovchenko, and B. S. Swartzentruber, Phys. Rev. Lett. 55, 987
    (1985).
    [70] N. Garcia, IBM Journal of Research and Development 30, 533 (1986).
    [71] P. Echenique and J. Pendry, Progress in Surface Science 32, 111 (1989).
    [72] R. S. Becker, B. S. Swartzentruber, and J. S. Vickers, Journal of Vacuum Science &
    Technology A 6, 472 (1988), 10.1116/1.575399 .
    [73] R. S. Becker, T. Klitsner, and J. S. Vickers, Phys. Rev. B 38, 3537 (1988).
    [74] J.H.Lai, Self-assembled Nanostructures and ZnO Surface Phenomena studied by Scanning
    Probe Microscopy and Spectroscopy, phdthesis, National Cheng Kung University
    (2010).
    [75] S. Su, The structural and chemical properties of Co growth on ZnO(10-10) surface,
    phdthesis, National Cheng Kung University (2013).
    [76] H.H.Chen, The structural property and interaction of bismuth-based low-dimensional
    structures growth on monolayer epitaxial graphene, mathesis, National Cheng Kung
    University (2015).
    [77] C.-K. Lee, C.-M. Cheng, S.-C. Weng, W.-C. Chen, K.-D. Tsuei, S.-H. Yu, M. M.-C.
    Chou, C.-W. Chang, L.-W. Tu, H.-D. Yang, C.-W. Luo, and M. M. Gospodinov, Scientific
    Reports 6 (2016), 10.1038/srep36538.
    [78] C. Pauly, C. Saunus, M. Liebmann, and M. Morgenstern, Phys. Rev. B 92, 085140
    (2015).
    [79] Y. Jiang, Y. Y. Sun, M. Chen, Y. Wang, Z. Li, C. Song, K. He, L. Wang, X. Chen, Q.-K.
    Xue, X. Ma, and S. B. Zhang, Phys. Rev. Lett. 108, 066809 (2012).
    [80] C. Seibel, H. Bentmann, J. Braun, J. Minár, H. Maaß, K. Sakamoto, M. Arita, K. Shimada,
    H. Ebert, and F. Reinert, Phys. Rev. Lett. 114, 066802 (2015).
    [81] H. L. Meyerheim and C. Tusche, physica status solidi (RRL) - Rapid Research Letters
    0 (2018), 10.1002/pssr.201800078.
    60
    [82] K.-W. Zhang, D. Ding, C.-L. Yang, Y. Gan, S. Li, W.-K. Huang, Y.-H. Song, Z.-Y. Jia,
    X.-B. Li, Z. Zhu, J. Wen, M. Chen, and S.-C. Li, Phys. Rev. B 93, 235445 (2016).
    [83] Y. Yu, L. She, H. Fu, M. Huang, H. Li, S. Meng, and G. Cao, ACS Nano 8, 11576
    (2014), pMID: 25350607, 10.1021/nn504817m .

    下載圖示 校內:2023-06-26公開
    校外:2023-06-26公開
    QR CODE