| 研究生: |
張洛嘉 Chang, Lo-Chia |
|---|---|
| 論文名稱: |
銀-鉑/針狀二氧化鈰觸媒之合成、特性分析及其氧化催化之研究 Synthesis, Characterization and Oxidative Catalysis of Silver-Platinum Supported on Ceria Needles |
| 指導教授: |
陳慧英
Chen, Huey-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 銀-鉑/二氧化鈰 、針狀二氧化鈰 、微濕含浸法 、一氧化碳氧化 |
| 外文關鍵詞: | Ag-Pt/CeO2, ceria needles, incipient wetness impregnation, CO oxidation |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以非恆溫沉澱法製備針狀CeO2擔體,再以微濕含浸法擔載Ag或Pt,製備出Ag/N-CeO2、Pt/N-CeO2以及Ag-Pt/N-CeO2觸媒,並進行CO氧化反應。本文探討變因有三,一為微濕含浸法中是否使用磁石攪拌,二為以依序含浸法及共含浸法製備Ag-Pt/N-CeO2,三為Ag與Pt之擔載濃度,探討上述變因對各觸媒形態、粒徑、晶相結構等特性之影響,並輔以TPR、in-situ FTIR及XPS分析,解析Ag、Pt與CeO2間之交互作用。
實驗結果顯示,使用磁石攪拌會使得N-CeO2長度變短,且粒子間之孔徑變小,造成比表面積下降,觸媒之催化活性亦下降。共含浸法經歷一次煅燒,降低粒子間聚集的機率,但結晶度亦會下降。因Pt-O-Ce鍵之生成,Pt較Ag有更佳之分散度,粒徑也較Ag小,由XRD與HRTEM結果發現Pt結晶度優於Ag,皆為Pt/N-CeO2活性優於Ag/N-CeO2之原因。此外,由in-situ FTIR及XPS結果發現,Ag將部分電子轉移至Ce上使得CeO2氧空缺增加,提高催化活性;Pt則接收Ce轉移之電子,使表面帶較多負電荷,更易吸附CO分子,由此提高觸媒活性。
室溫(30oC)下,擔載低濃度(0.03%、0.05%及0.1%)之金屬含量,共含浸之Ag-Pt/N-CeO2擁有最佳催化活性(轉化率5-8%),提高金屬含量至0.5%時,以依序含浸之Ag-Pt/N-CeO2催化活性最高(轉化率72.94%),當金屬擔載量提高時,僅共含浸之Ag-Pt/N-CeO2未有明顯活性改善,推測係因共含浸法可能形成合金,當擔載高濃度之雙金屬時,Ag的存在降低Pt吸附CO之能力,而依序含浸法有較好之活性推測為Ag-Pt間之電子轉移,加上金屬與擔體間之協同作用所致。
Silver and platinum nanoparticles loaded on ceria needles synthesized by incipient wetness impregnation were employed as CO oxidative catalysts. Properties of catalysts including morphologies, particle size, crystalline structure and interactions between Ag, Pt and ceria are characterized by using TEM, HRTEM, XRD, TPR, in-situ FTIR and XPS analysis. From the experimental results, stirring with the stirring bar in impregnation process decreased the length the void size of ceria support. For the bimetal catalysts, the dispersion is better while the crystallinity is worse by the co-impregnation method. As different metal loaded on the support, Pt has better crystallinity and smaller size than Ag because of the Pt-O-Ce bonds. Moreover, it is found that the transfer of electrons from Ag to Ce increases the oxygen vacancy of CeO2 and improves the catalytic activity. The transfer of electrons from Ce to Pt makes the surface more negatively charged and easier to adsorb CO molecules. Ag-Pt/N-CeO2 catalysts which loaded low concentration of metal(0.03, 0.05 and 0.1%) by co-impregnation method show the highest activity on CO oxidation at the room temperature. Ag-Pt/N-CeO2 catalysts which loaded higher concentration of metal(0.5%) by sequential impregnation method show the highest activity on CO oxidation at the room temperature. This is attributed from the transfer of electrons and synergistic effect of metal-support.
[1]Z. L. Wang, X. D. Feng, “Polyhedral shapes of CeO2 nanoparticles”, J. Phys. Chem. B, 107(49), 13563-13566 (2003).
[2]C. W. Sun, H. Li, L. Q. Chen, “Nanostructured ceria-based materials: synthesis, properties, and applications”, Energy Environ. Sci., 5(9), 8475-8505 (2012).
[3]C. J. Zhang, Michaelides A., D. A. King, Jenkins S.J., “Oxygen vacancy clusters on ceria: Decisive role of cerium f electrons”, Phys. Rev. B, 79(7), 11 (2009).
[4]Brezesinski T., Antonietti M., Groenewolt M., Pinna N., Smarsly B., “The generation of mesostructured crystalline CeO2, ZrO2 and CeO2-ZrO2 films using evaporation-induced self-assembly”, New J. Chem., 29(1), 237-242 (2005).
[5]X. H. Lu, X. Huang, S. L. Xie, D. Z. Zheng, Z. Q. Liu, C. L. Liang, Y. X. Tong, “Facile electrochemical synthesis of single crystalline CeO2 octahedrons and their optical properties”, Langmuir, 26(10), 7569-7573 (2010).
[6]Amol P.Amrute, Cecilia Mondelli, Maximilian Moser, Gerard Novell-Leruth, Núria López, Dirk Rosenthal, Ramzi Farra, Manfred E.Schuster, Detre Teschner, Timm Schmidt, Javier Pérez-Ramírez, “Performance, structure, and mechanism of CeO2 in HCl oxidation to Cl2”, Journal of catalysis, 286, 287-297 (2012).
[7]Chengsi Pan, Dengsong Zhang, Liyi Shi, Jianhui Fang, “Template‐free synthesis, controlled conversion, and CO oxidation properties of CeO2 nanorods, nanotubes, nanowires, and nanocubes”, European Journal of Inorganic Chemistry, 2008(15), 2429-2436 (2008).
[8]Vilé, G., Colussi, S., Krumeich, F., Trovarelli, A., Pérez‐Ramírez, J., “Opposite face sensitivity of CeO2 in hydrogenation and oxidation catalysis”, Angewandte Chemie International Edition, 53(45), 12069-12072 (2014).
[9]X. Liang, J. Xiao, B. Chen, Y. Li, “Catalytically stable and active CeO2 mesoporous spheres”, Inorganic chemistry, 49(18), 8188-8190 (2010).
[10]Chunman Ho, Jimmy C. Yu, Tszyan Kwong, Angelo C. Mak, Sukyin Lai, “Morphology-controllable synthesis of mesoporous CeO2 nano- and microstructures”, Chem. Mater, 17(17), 4514-4522 (2005).
[11]Krishna, K., Bueno-López, A., Makkee, M., Moulijn, J. A., “Potential rare-earth modified CeO2 catalysts for soot oxidation: Part III. Effect of dopant loading and calcination temperature on catalytic activity with O2 and NO + O2”, Applied Catalysis B: Environmental, 75(3-4), 210-220 (2007).
[12]Machida, M., Murata, Y., Kishikawa, K., D. Zhang, Ikeue, K., “On the reasons for high activity of CeO2 catalyst for soot oxidation”, Chemistry of Materials, 20(13), 4489-4494 (2008).
[13]G. Zhou, B. Gui, H. Xie, F. Yang, Y. Chen, S. Chen, X. Zheng, “Influence of CeO2 morphology on the catalytic oxidation of ethanol in air”, Journal of Industrial and Engineering Chemistry, 20(1), 160-165 (2014).
[14]Y. Huang, B. Long, M. Tang, Z. Rui, Balogun, M. S., Y. Tong, H. Ji, “Bifunctional catalytic material: an ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation”, Applied Catalysis B: Environmental, 181, 779-787 (2016).
[15]M. Li, Z. Wu, Overbury, S. H., “Surface structure dependence of selective oxidation of ethanol on faceted CeO2 nanocrystals”, Journal of catalysis, 306, 164-176 (2013).
[16]Abbasi, Z., Haghighi, M., Fatehifar, E., Rahemi, N., “Comparative synthesis and physicochemical characterization of CeO2 nanopowder via redox reaction, precipitation and sol–gel methods used for total oxidation of toluene”, Asia‐Pacific Journal of Chemical Engineering, 7(6), 868-876 (2012).
[17]L. Wang, Y. Wang, Y. Zhang, Y. Yu, H. He, X. Qin, B. Wang, “Shape dependence of nanoceria on complete catalytic oxidation of o-xylene”, Catalysis Science & Technology, 6(13), 4840-4848 (2016).
[18]Golunski S.E., Hatcher H.A., Rajaram R.R., Truex T.J., “Origins of low-temperature 3-way activity in Pt/CeO2”, Appl. Catal. B-Environ., 5(4), 367-376 (1995).
[19]J. Lee, Y. Ryou, X. Chan, T. J. Kim, D. H. Kim, “How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: The origin of improved thermal stability of Pt/CeO2 compared to CeO2”, J. Phys. Chem. C, 120(45), 25870-25879 (2016).
[20]A. B. Zhou, J. Wang, H. Wang, H. Li, J. Q. Wang, M. Q. Shen, “Effect of active oxygen on the performance of Pt/CeO2 catalysts for CO oxidation”, J. Rare Earths, 36(3), 257-264 (2018).
[21]M. Q. Shen, L. F. Lv, J. Q. Wang, J. X. Zhu, Y. Huang, J. Wang, “Study of Pt dispersion on Ce based supports and the influence on the CO oxidation reaction”, Chem. Eng. J., 255, 40-48 (2014).
[22]H. L. Wang, S. T. Luo, M. S. Zhang, W. Liu, X. D. Wu, S. Liu, “Roles of oxygen vacancy and Ox(-) in oxidation reactions over CeO2 and Ag/CeO2 nanorod model catalysts”, J. Catal., 368, 365-378 (2018).
[23]Spezzati G., Benavidez A.D., DeLaRiva A.T., Su Y.Q., Hofmann J.P., Asahina S., Olivier E.J., Neethling J.H., Miller J.T., Datye A.K., Hensen E.J.M., “CO oxidation by Pd supported on CeO2(100) and CeO2(111) facets”, Appl. Catal. B-Environ., 243, 36-46 (2019).
[24]Y. Yan, H. X. Li, Z. H. Lu, X. W. Wang, R. B. Zhang, G. Feng, “Effects of reduction temperature and content of Pd loading on the performance Pd/CeO2 catalyst for CO oxidation”, Chin. Chem. Lett., 30(6), 1153-1156 (2019).
[25]Cordeiro G.L., de Camargo E.F., Santos M.C.L., Pereira C.V., Ussui V., de Lima N.B., Neto A.O., Lazar D.R.R., “Improved Pt/CeO2 electrocatalysts for ethanol electro-oxidation”, Int. J. Electrochem. Sci., 13(7), 6388-6401 (2018).
[26]Teschner D., Wootsch A., Pozdnyakova O., Sauer H., Knop-Gericke A., Schlogl R., “Surface and structural properties of Pt/CeO2 catalyst under preferential CO oxidation in hydrogen (PROX)”, React. Kinet. Catal. Lett., 87(2), 235-247 (2006).
[27]B. F. Wang, B. X. Chen, Y. H. Sun, H. L. Xiao, X. X. Xu, M. L. Fu, J. L. Wu, L. M. Chen, D. Q. Ye, "Effects of dielectric barrier discharge plasma on the catalytic activity of Pt/CeO2 catalysts", Appl. Catal. B-Environ., 238, 328-338 (2018).
[28]S. F. Song, Y. J. Wu, S. S. Ge, L. Wang, Y. S. Wang, Y. L. Guo, W. C. Zhan, Y. Guo, “A facile way to improve Pt atom efficiency for CO oxidation at low temperature: Modification by transition metal oxides”, ACS Catal., 9(7), 6177-6187 (2019).
[29]J. H. Lee, S. H. Lee, J. W. Choung, C. H. Kim, K. Y. Lee, “Ag-incorporated macroporous CeO2 catalysts for soot oxidation: Effects of Ag amount on the generation of active oxygen species”, Appl. Catal. B-Environ., 246, 356-366 (2019).
[30]Oliva, C., Termignone, G., Vatti, F. P., Forni, L., Vishniakov, A. V., “Electron paramagnetic resonance spectra of CeO2 catalyst for CO oxidation”, Journal of materials science, 31(23), 6333-6338 (1996).
[31]Bishop S. R., Stefanik T. S., Tuller H. L., “Electrical conductivity and defect equilibria of Pr0.1Ce0.9O2-”, Phys. Chem. Chem. Phys., 13(21), 10165-10173 (2011).
[32]Aparicio-Angles X., Roldan A., de Leeuw N.H., “Gadolinium-vacancy clusters in the (111) surface of Gadolinium-doped Ceria: A density functional theory study”, Chem. Mat., 27(23), 7910-7917 (2015).
[33]Kawamura K., Watanabe K., Hiramatsu T., Kaimai A., Nigara Y., Kawada T., Mizusaki J., “Electrical conductivities of CaO doped ZrO2-CeO2 solid solution system”, Solid State Ion., 144(1-2), 11-18 (2001).
[34]Pan, Chengsi, Dengsong Zhang, Liyi Shi, “CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods”, Journal of solid state chemistry, 181(6), 1298-1306 (2008).
[35]D. Zhang, C. Pan, L. Shi, L. Huang, J. Fang, H. Fu, “A highly reactive catalyst for CO oxidation: CeO2 nanotubes synthesized using carbon nanotubes as removable templates”, Microporous and Mesoporous Materials, 117(1-2), 193-200 (2009).
[36]González-Rovira, L., Sánchez-Amaya, J. M., López-Haro, M., Del Rio, E., Hungría, A. B., Midgley, P., Calvino, J. J., S. n. Bernal and FJ Botana, “Single-Step Process To Prepare CeO2 Nanotubes with Improved Catalytic Activity”, Nano Lett, 9, 1395-1400 (2009).
[37]X. N. Chen, J. Y. Chen, Y. Zhao, M. S. Chen, H. L Wan., “Effect of dispersion on catalytic performance of supported Pt catalysts for CO oxidation”, Chin. J. Catal., 33(12), 1901-1905 (2012).
[38]Y. X. Gao, W. D. Wang, S. J. Chang, W. X. Huang, “Morphology effect of CeO2 support in the preparation, metal-support interaction, and catalytic performance of Pt/CeO2 catalysts”, ChemCatChem, 5(12), 3610-3620 (2013).
[39]X. L Wang., X. P. Fu, W. W. Wang, C. Ma, R. Si, C. J. Jia, “Effect of structural evolution of gold species supported on ceria in catalyzing CO oxidation”, J. Phys. Chem. C, 123(14), 9001-9012 (2019).
[40]Jardim E.O., Rico-Frances S., Coloma F., Anderson J.A., Silvestre-Albero J., Sepulveda-Escribano A., “Influence of the metal precursor on the catalytic behavior of Pt/Ceria catalysts in the preferential oxidation of CO in the presence of H2 (PROX)”, J. Colloid Interface Sci., 443, 45-55 (2015).
[41]K. B. Zhou, X. Wang, X. M. Sun, Q. Peng, Y. D. Li, ”Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes”, J. Catal., 229(1), 206-212 (2005).
[42]W. L. Chen, Yu Sun, Igor Djerdj, Pascal Voepel, Carl-Christian Sack, Tobias Weller, Rüdiger Ellinghaus, Joachim Sann, Yanglong Guo, Bernd M. Smarsly, Herbert Over, “Shape-controlled CeO2 nanoparticles: stability and activity in the catalyzed HCl oxidation reaction”, ACS Catalysis, 7(10), 6453-6463 (2017).
[43]H. Y. Lee, S. I. Kim, Y. P. Hong, Y. C Lee., Y. H. Park, K. H. Ko, “Controlling the texture of CeO2 films by room temperature RF magnetron sputtering”, Surf. Coat. Technol., 173(2-3), 224-228 (2003).
[44]Guillou N., Nistor L.C., Fuess H., Hahn H., “Microstructural studies of nanocrystalline CeO2 produced by gas condensation”, Nanostruct. Mater., 8(5), 545-557, (1997).
[45]Murugan R., Vijayaprasath G., Mahalingam T., Hayakawa Y., Ravi G., “Effect of RF power on the properties of magnetron sputtered CeO2 thin films”, J. Mater. Sci.-Mater. Electron., 26(5), 2800-2809 (2015).
[46]Mal R., Islam M.J., Reddy D.A., T. K. Kim, “Transformation of CeO2 into a mixed phase CeO2/Ce2O3 nanohybrid by liquid phase pulsed laser ablation for enhanced photocatalytic activity through Z-scheme pattern”, Ceram. Int., 42(16), 18495-18502 (2016).
[47]H. I. Chen, H. Y. Chang, “Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents”, Colloid Surf. A-Physicochem. Eng. Asp., 242(1-3), 61-69 (2004).
[48]P. L. Chen, I. W. Chen, “Reactive cerium(IV) oxide powders by the homogeneous precipitation method”, J. Am. Ceram. Soc., 76(6), 1577-1583 (1993).
[49]H. I. Chen, H. Y. Chang, “Synthesis of nanocrystalline cerium oxide particles by the precipitation method”, Ceram. Int., 31(6), 795-802 (2005).
[50]Madler L., Stark W.J., Pratsinis S.E., “Flame-made ceria nanoparticles”, J. Mater. Res., 17(6), 1356-1362 (2002).
[51]張宏毅。二氧化鈰奈米粉體之晶形操控-製備、特性分析及氧化催化活性。成功大學博士論文,2005。
[52]李美萱。銀-鉑/二氧化鈰觸媒之合成及其催化一氧化碳氧化之研究。成功大學碩士論文,2018。
[53]Abid M., Touroude R., “Pt/CeO2 catalysts in selective hydrogenation of crotonaldehyde: high performance of chlorine-free catalysts”, Catal. Lett., 69(3-4), 139-144 (2000).
[54]Nie L., “Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation”, Science, 363(6427), 593-593, (2019).
[55]J. H. Park, J. H. Cho, S. E. Kang, K. H. Cho, T. W. Lee, H. S. Han, C. H. Shin, “Low-temperature CO oxidation over water tolerant Pt catalyst supported on Al-modified CeO2”, Korean J. Chem. Eng., 30(3), 598-604 (2013).
[56]F. X Cao., S. Zhang, W. Gao, T. Cao, Y. Q. Qu, “Facile synthesis of highly-dispersed Pt/CeO2 by a spontaneous surface redox chemical reaction for CO oxidation”, Catal. Sci. Technol., 8(13), 3233-3237, (2018).
[57]J.C. Frost, “Junction effect interactions in methanol synthesis catalysts”, Nature, 334, 577-580, (1988).
[58]Breysse, M., Guenin, M., Claudel, B., Veron, J., “Catalysis of carbon monoxide oxidation by cerium dioxide”, Journal of Catalysis, 28(1), 54-62 (1973).
[59]H. Y. Chang, H. I. Chen, “Morphology Evolution for CeO2 Nanoparticles Synthesized by Precipitation Technique”, J. Cryst Growth, 283, 457-468 (2005).
[60]Madier, Y., Descorme, C., Le Govic, A. M., Duprez, D., “Oxygen mobility in CeO2 and CexZr(1-x)O2 compounds: Study by CO transient oxidation and 18O/16O isotopic exchange”, The Journal of Physical Chemistry B, 103(50), 10999-11006 (1999).
[61]S. Y. Hwang, C. Zhang, Yurchekfrodl, E. Z. Peng, “Property of Pt–Ag alloy nanoparticle catalysts in carbon monoxide oxidation”, The Journal of Physical Chemistry C, 118(49), 28739-28745 (2014).
[62]C. Li, Sakata, Y., Arai, T., Domen, K., Maruya, K. I., Onishi, T., “Carbon monoxide and carbon dioxide adsorption on cerium oxide studied by Fourier-transform infrared spectroscopy”, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 85(4), 929-943, (1989).
[63]Vayssilov, G. N., Mihaylov, M., Petkov, P. S., Hadjiivanov, K. I., Neyman, K. M., “Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: a combined density functional and infrared spectroscopy investigation”, The Journal of Physical Chemistry C, 115(47), 23435-23454 (2011).
[64]Bozon-Verduraz, F., Bensalem, A., “IR studies of cerium dioxide: influence of impurities and defects”, Journal of the Chemical Society, Faraday Transactions, 90(4), 653-657 (1994).
[65]D. W. Daniel, “Infrared studies of CO and CO2 adsorption on Pt/CeO2: The characterization of active sites”, J. Phys. Chem., 92, 3891-3899 (1988).
[66]Binet, C., Badri, A., Boutonnet-Kizling, M., Lavalley, J. C., “FTIR study of carbon monoxide adsorption on ceria: CO2–2 carbonite dianion adsorbed species”, Journal of the Chemical Society, Faraday Transactions, 90(7), 1023-1028 (1994).
[67]Binet, C., Daturi, M., Lavalley, J. C., “IR study of polycrystalline ceria properties in oxidised and reduced states”, Catalysis Today, 50(2), 207-225 (1999).
[68]Kolobova, E., Pestryakov, A., Shemeryankina, A., Kotolevich, Y., Martynyuk, O., Vazquez, H. T., Bogdanchikova, N., “Formation of silver active states in Ag/ZSM-5 catalysts for CO oxidation”, Fuel, 138, 65-71 (2014).
[69]H. H. Liu, Y. Wang, Jia, A. P., S. Y. Wang, Luo, M. F. J. Q. Lu, “Oxygen vacancy promoted CO oxidation over Pt/CeO2 catalysts: A reaction at Pt–CeO2 interface”, Applied surface science, 314, 725-734 (2014).
[70]Nguyen, T. S., Morfin, F., Aouine, M., Bosselet, F., Rousset, J. L., Piccolo, L., “Trends in the CO oxidation and PROX performances of the platinum-group metals supported on ceria”, Catalysis Today, 253, 106-114 (2015).
[71]Jingshan S. Du, Ting Bian, Junjie Yu, Yingying Jiang, Xiaowei Wang, Yucong Yan ,Yi Jiang, Chuanhong Jin, Hui Zhang, Deren Yang, “Embedding ultrafine and high‐content Pt nanoparticles at ceria surface for enhanced thermal stability”, Advanced Science, 4(9), 1700056 (2017).
[72]M. Happel, J. Mysliveček, V. Johánek, F. Dvořák, O. Stetsovych, Y. Lykhach, V. Matolín, J. Libuda, “Adsorption sites, metal-support interactions, and oxygen spillover identified by vibrational spectroscopy of adsorbed CO: A model study on Pt/ceria catalysts”, Journal of catalysis, 289, 118-126 (2012).