| 研究生: |
李天 Mourot, Gildas Daniel Alain |
|---|---|
| 論文名稱: |
具有不同電極夾角的脈衝電漿推進器的優化與性能量測 Optimization and performance measurements of the pulsed plasma thruster with various electrode angles |
| 指導教授: |
李約亨
Li, Yueh-Heng |
| 共同指導教授: |
張博宇
Chang, Po-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 電力推進 、脈衝電漿推進器 、電極角度 、非對稱擴張角, 田口法 、朗繆爾三探針 |
| 外文關鍵詞: | electric propulsion, pulsed plasma thruster, electrode angles, asymmetric flare angle, Taguchi method, Langmuir triple probe |
| 相關次數: | 點閱:62 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脈衝電漿推進器 (PPT) 是一種電力推進裝置,通過脈衝電流和感應磁場之間的相互作用加速電漿產生推力。是太空產業中仍在廣為使用的太空推進技術之一。它們的小尺寸和低推進劑消耗使它們對微型衛星應用非常有吸引力,例如衛星的位置控制、高度控制,甚至行星際任務。它們的設計簡單和低成本,使得它們在中小型太空產業和學術界中更具吸引力。越來越多的關注和發展為衛星推進提供了一個充滿希望的未來。今天,電力推進研究的重點是推進器設計的優化和推進器性能的提高。因此,本研究著重於具有可變電極角度(即對稱或非對稱擴張角)的 PPT 的優化和性能測量,以探討具有三種不同電極角度建構九種不同的配置組合。
使用田口法是以最少的實驗組數進行優化分析,整體實驗組數減少到九種不同的配置,有效率地進行 PPT 推進性能極大化,例如脈衝位和排氣速度, 朗繆爾三探針用於測量電漿特性。這允許測量PPT 的電漿參數,包含:脈衝位、排氣速度、電子溫度和電子密度。根據田口法的結果,確定電極角度、放電能量和對稱性對前面提到的四個電漿參數的影響。結果顯示實驗 3([0;40],2 J 放電能量)脫穎而出,其脈衝位可達到158.55 μN∙s−1 , 電漿速度為39 071 m∙s−1,電子溫度為18.48 eV, 電子密度為4.95 × 10-20 m−3,每個參數的最佳配置已確定,但驗證的部分尚未完闕。
關鍵字: 電力推進、脈衝電漿推進器、電極角度、 非對稱擴張角, 田口法、 朗繆爾三探針.
Pulsed Plasma Thrusters (PPT) are electric propulsion devices that produce thrust through the acceleration of plasma by the interaction between pulsed current and induced magnetic fields. They are one of the oldest space propulsion technologies still used in the space industry. Their small size and low propellant consumption make them very attractive for microsatellite applications, such as station keeping, altitude control, or even interplanetary missions. Their design simplicity and low cost make them more attractive in small and medium space enterprises and universities. The increased attention and development offer a promising future for satellite propulsion.
Today, electric propulsion research is focused on the optimization of thruster design and enhancement of thruster performance. Regarding this, this study centers on the optimization and performances measurement of a PPT with variable electrode angles, that is, symmetric or asymmetric flare angle. Three different electrode angles have been studied with nine different configurations, one of which stands out with its performances.
Taguchi method was used in order to maximize the PPT propulsion performance, such as the impulse bit and exhaust velocity, with a minimum of experiment runs, reducing to nine different configurations. A Langmuir triple probe was used to gauge the plasma properties. This allowed the measurement of several PPT parameters such as the impulse bit, exhaust velocity, electron temperature and electron density. According to the result of Taguchi method, the impact of the electrode angles, the discharge energy and the symmetry on the four previously mentioned parameters were determined. Regarding these nine runs, experiment 3 ([0;40], 2 J discharge energy) stands out and produces an impulse bit of 158.55 μN∙s^(-1), a plasma velocity of 39 071 m∙s^(-1), an electron temperature of 18.48 eV, and an electron density of 4.95 〖×10^(-20) m〗^(-3). The optimal configuration for each parameter was determined but not verified.
Keywords: electric propulsion, pulsed plasma thruster, electrode angles, asymmetric flare angle, Taguchi method, Langmuir triple probe.
[1] Goebel, D. M., Katz, I. Fundamentals of electric propulsion: ion and Hall thrusters: John Wiley & Sons; 2008.
[2] Goddard, R. H. The papers of Robert H. Goddard, including the reports to the Smithsonian Institution and the Daniel and Florence Guggenheim Foundation. New York,: McGraw-Hill; 1970.
[3] Mel'kumov, T. Pioneers of rocket technology: selected works: National Aeronautics and Space Administration; 1965.
[4] Stuhlinger, E. Ion propulsion for space flight. New York,: McGraw-Hill; 1964.
[5] Jahn, R. G. Physics of electric propulsion. New York,: McGraw-Hill; 1968.
[6] Brewer, G. R. Ion propulsion; technology and applications. New York,: Gordon and Breach; 1970.
[7] Kim, V. State of Works on Electrical Thrusters in the USSR. International Electric Propulsion Conference. Viareggio, Italy. 1991.
[8] Kim, V. P., Popov, G., Arkhipov, B., et al. Electric Propulsion Activity in Russia. International Electric Propulsion Conference. Pasadena, California, USA. 2001.
[9] Mazouffre, S. Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sources Science and Technology. 2016;25.
[10] Hoskins, W. A., Cassady, R. J., Morgan, O., et al. 30 years of electric propulsion flight experience at Aerojet Rocketdyne. 33rd International Electric Propulsion Conference2013. p. 1-12.
[11] Rezaeiha, A., Mankavi, F. A Study of the Effect of Input Power on Liquified-Gas Resistojet Performance. Asian Joint Conference on Propulsion and Power. Xi’an, China. 2012.
[12] Andrew, H. W., Joseph, C. R., O., M., et al. 30 Years of Electric Propulsion Flight Experience at Aerojet Rocketdyne. IEPC 2013-439. The George Washington University, USA. 2013. 2013-439.
[13] Sankaran, K., Cassady, L., Kodys, A. D., et al. A survey of propulsion options for cargo and piloted missions to Mars. Ann N Y Acad Sci. 2004;1017:450-67.
[14] Loeb, H. W. Plasma-based ion beam sources. Plasma Physics and Controlled Fusion. 2005;47.
[15] Groh, K. H., Loeb, H. W. State of the art of radio-frequency ion sources for space propulsion. Review of Scientific Instruments. 1994;65.
[16] Dawn, Ion Propulsion. NASA.
https://solarsystem.nasa.gov/missions/dawn/technology/ion-propulsion/.
[17] Räisänen, O. A diagram of an electrostatic ion thruster. Wikipedia. 2012.
[18] Hofer, R., Randolph, T. M., Oh, D. Y., et al. Evaluation of a 4.5 kW Commercial Hall Thruster System for NASA Science Missions. ASEE Joint Propulsion Conference and Exhibit. Sacramento, California, USA. 2006.
[19] Hofer, R., Goebel, D. M., Snyder, J. S., et al. BPT-4000 Hall Thruster Extended Power Throttling Range Characterization for NASA Science Missions International Electric Propulsion Conference. University of Michigan, Ann Arbor, Michigan, USA. 2009.
[20] AEHF Satellite Constellation.
spaceflight101.com.
[21] Hall Thruster. Komurasaki-Koizumi Laboratory, Department of Aeronautics and Astronautics, The University of Tokyo, Japan.
http://www.al.t.u-tokyo.ac.jp/hall_e.html.
[22] Vialis, T. Development of an electron cyclotron resonance plasma thruster for satellites
Développement d’un propulseur plasma à résonance cyclotron électronique pour les satellites: Sorbonne Université; 2018.
[23] Magnetoplasmadynamic Thrusters. Glenn Research Center, NASA.
https://www.nasa.gov/centers/glenn/about/fs22grc.html.
[24] Jahn, R. G., Choueiri, E. Y. Electric Propulsion. In: Meyers R. A., editor. Encyclopedia of Physical Science and Technology (Third Edition). New York: Academic Press; 2003. p. 125-41.
[25] Turner, M. J. L. Rocket and spacecraft propulsion : principles, practice and new developments. 3rd ed. Berlin ; New York: Springer, published in association with Praxis Pub.; 2009.
[26] Sutton, G. P., Biblarz, O. Rocket propulsion elements. 8th ed. Hoboken, N.J.: Wiley; 2010.
[27] Khatry, J., Aydogan, F., Ilyas, M., et al. Design of a passive safety system for a nuclear thermal rocket. Annals of Nuclear Energy. 2018;111:536-53.
[28] CubeSat.
www.cubesat.org.
[29] What is a CubeSat & other picosatellites. Nanosats Database.
https://www.nanosats.eu/cubesat.
[30] CubeSat sizes Nanosats Database.
https://www.nanosats.eu/cubesat.
[31] Walker, R. Technology CubeSats. European Space Agency.
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Technology_CubeSats.
[32] Páscoa, J., Teixeira, O., Ribeiro, G. A Review of Propulsion Systems for CubeSats. International Mechanical Engineering Conference and Exhibit. Pittsburgh, USA. 2018. IMECE2018-88174.
[33] NASA Mission Design Division. Small Spacecraft Technology State of the Art. NASA Ames Research Center, Moffett Field, California, USA2015.
[34] Lev, D., Myers, R. M., Lemmer, K. M., et al. The technological and commercial expansion of electric propulsion. Acta Astronautica. 2019;159:213-27.
[35] Lev, D., Myers, R. M., Lemmer, K., et al. The Technological and Commercial Expansion of Electric Propulsion in the Past 24 Years. International Electric Propulsion Conference. Georgia Institute of Technology, Atlanta, Georgia, USA. 2017. IEPC-2017-242.
[36] Lemmer, K. Propulsion for CubeSats. Acta Astronautica. 2017;134:231-43.
[37] Blockley, R., Shyy, W. Encyclopedia of aerospace engineering. Chichester, West Sussex, U.K. ; Hoboken, N.J.: Wiley; 2010.
[38] Wu, Z., Huang, T., Liu, X., et al. Application and development of the pulsed plasma thruster. Plasma Science and Technology. 2020;22.
[39] Solbes, A., Thomassen, K. I., Vondra, R. J. Analysis of solid Teflon pulsed plasma thruster. Journal of Spacecraft and Rockets. 1970;7.
[40] Spanjers, G., Lotspeich, J. S., McFall, K., et al. Propellant Losses Because of Particulate Emission in a Pulsed Plasma Thruster. Journal of Propulsion and Power. 1998;14.
[41] Spanjers, G., McFall, K., Gulczinski, F. I., et al. Investigation of propellant inefficiencies in a pulsed plasma thruster. 32nd Joint Propulsion Conference and Exhibit. Lake Buena Vista, Florida, USA. 1996. 96-2723.
[42] Thomassen, K. I., Vondra, R. J. Exhaust Velocities Studies of a Solid State Teflon Pulsed Plasma Thruster. Journal of Spacecraft and Rockets. 1972;9.
[43] Kuninaka, H., Satori, S. Development and Demonstration of a Cathodeless Electron Cyclotron Resonance Ion Thruster. Journal of Propulsion and Power. 1998;14.
[44] Burton, R. L., Turchi, P. J. Pulsed Plasma Thruster. Journal of Propulsion and Power. 1998;14.
[45] Huang, T. Experimental and theoretical study on the energy distribution mechanism in pulsed plasma thrusters [PhD]: Beijing Institute of Technoogy, Beijing, China; 2017.
[46] Palumbo, D. J., Guman, W. J. Effects of Propellant and Electrode Geometry on Pulsed Ablative Plasma Thruster Performance. Journal of Spacecraft and Rockets. 1976;13.
[47] Schönherr, T., Nawaz, A., Herdrich, G., et al. Influence of Electrode Shape on Performance of Pulsed Magnetoplasmadynamic Thruster SIMP-LEX. Journal of Propulsion and Power. 2009;25.
[48] Zhe, Z., Ren, J., Tant, H., et al. An ablative pulsed plasma thruster with a segmented anode. Plasma Sources Science and Technology. 2018;27.
[49] Ling, Y. L., Zhang, S., Liu, X., et al. Spectroscopic Plasma Emission from a Pulsed Plasma Thruster with Asymmetric Electrodes. AIAA Propulsion and Energy 2019 Forum. Indianapolis, Indiana, USA. 2019. AIAA-2019-3905.
[50] Kamimura, T., Tahara, H. R&D, Launch and Initial Operation of the Osaka Institute of Technology 1st PROITERES Nano-Satellite with Electrothermal Pulsed Plasma Thrusters and Development of the 2nd and 3rd Satellites. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, Ohio, USA. 2014.
[51] Northway, P., Aubuchon, C., Mellema, H., et al. Pulsed plasma thruster gains in specific thrust for CubeSat propulsion. 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Atlanta, Georgia, USA. 2017. AIAA 2017-5040.
[52] Rezaeiha, A., M., A., M., F. A parametric study of the effect of discharge energy on PPT performance. 28th International Symposium on Space Technology and Science (ISTS). Okinawa, Japan. 2011. ISTS2011-b-02.
[53] Antropov, N. N., Popov, G. A., Kazeev, M. N., et al. Low Bank Energy APPT for Micro Satellites. 30th International Electric Propulsion Conference. Florence, Italy. 2007. IEPC-2007-126.
[54] Huang, T. Study on a Double Pulse Discharge Solid Pulsed Plasma Thruster. 64th International Astronautical Congress. Beijing, China. 2013. IAC-13,C4,4,14,x16560.
[55] Okada, M., Okawa, Y., Tachibana, T. Double Discharge Operation for Pulsed Plasma Thrusters. 27th International Electric Propulsion Conference. Pasadena, California, USA. 2001. IEPC-01-156.
[56] Intini Marques, R., Gabriel, S. B., de Souza Costa, F. The Two-Stage Pulsed Plasma Thruster. 31th International Electric Propulsion Conference. Ann Arbor, Michigan, USA. 2009. IEPC-2009-250.
[57] Wu, Z., Sun, G., Huang, T., et al. Optimization of the Energy Distribution in Ablative Pulsed Plasma Thrusters. AIAA Journal. 2018;14.
[58] Schönherr, T., Abe, Y., Okamura, K., et al. Influence of Propellant in the Discharge Process of PPT. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Atlanta, Georgia, USA. 2012. AIAA 2012-4278.
[59] Koizumi, H., Kakami, A., Furuta, Y., et al. Liquid Propellant Pulsed Plasma Thruster. 28th International Electric Propulsion Conference. Toulouse, France. 2003. IEPC-03-087.
[60] Kakami, A., Koizumi, H., Komurasaki, K., et al. Design and performance of liquid propellant pulsed plasma thruster. Vacuum. 2004;73:419-25.
[61] Fearn, D. G. A Pulsed Plasma Thruster Using Mercury Propellant: A Late-1960s Project at the Royal Aerospace Establishment, Farnborough. 30th International Electric Propulsion Conference. Florence, Italy. 2007. IEPC-2007-290.
[62] Rezaeiha, A., Schönherr, T. Review of Worldwide Activities in Liquid-Fed Pulsed Plasma Thruster. Journal of Propulsion and Power. 2014;30.
[63] Barral, S., Kurzyna, J., Remírez, E., et al. Development Status of an Open Capillary Pulsed Plasma Thruster with Non-Volatile Liquid Propellant. 33rd International Electric Propulsion Conference. The George Washington University, Washington, D.C., USA. 2013. IEPC-2013-291.
[64] Azuara Rosales, M., Winglee, R., Hansen, C. A. Theoretical and Experimental Analysis for an Air-Breathing Pulsed Plasma Thruster. AIAA Propulsion and Energy 2019 Forum. Indianapolis, Indiana, USA. 2019. AIAA 2019-3888.
[65] Schilling, J. Development of the two-stage micro pulsed plasma thruster: University of Southern California; 2007.
[66] Zhou, Y., Liu, X., Zhang, X., et al. Experimental Investigation on the Ablation Mechanism of HTPB Propellant PPT. 35th International Electric Propulsion Conference. Georgia Institute of Technology, Atlanta, Georgia, USA. 2017. IEPC-2017-322.
[67] Liu, X., Tu, Y., Zhou, Y., et al. Experimental Investigation of Pulsed Plasma Thruster with C/Cu dopant PTFE. 6th International Conference on Space Propulsion. Seville, Spain. 2018.
[68] Matsubara, K., Hosokawa, H., Akashi, N., et al. A Short-Pulse Laser-Assisted Pulsed Plasma Thruster. 51st AIAA/SAE/ASEE Joint Propulsion Conference. Orlando, Florida, USA. 2015. AIAA 2015-4183.
[69] Zhang, Y., Zhang, D., Wu, J., et al. A novel laser ablation plasma thruster with electromagnetic acceleration. Acta Astronautica. 2016;127:438-47.
[70] Dorn, K. Optimizing the effect of electrode angle on the performance of pulsed plasma thruster [Master Thesis]: National Cheng Kung University, Tainan, Taiwan, R.O.C.; 2020.
[71] Lobbia, R., Beal, B. E. Recommended Practice for Use of Langmuir Probes in Electric Propulsion Testing. Journal of Propulsion and Power. 2017;33:1-16.
[72] Woolf, P. Design of Experiments via Taguchi Methods - Orthogonal Arrays.
https://eng.libretexts.org/@go/page/22674.
[73] Kong, T. Taguchi methods in experimental design. Proceeding of SAS Conference Midwest SAS Users Group, Minneapolis, Minnesota, USA.
https://www.lexjansen.com/mwsug/1996/MWSUG96021.pdf.
[74] Pellinen, D. G., Di Capua, M. S., Sampayan, S. E., et al. Rogowski coil for measuring fast, high‐level pulsed currents. Review of Scientific Instruments. 1980;51:1535-40.