簡易檢索 / 詳目顯示

研究生: 陳憑彥
Chen, Ping-Yen
論文名稱: 利用射頻磁控濺鍍系統製備具鈣鈦礦結構薄膜之光催化特性研究
Study on photocatalytic properties of perovskite thin films by RF magnetron sputtering deposition
指導教授: 陳燕華
Chen, Yen-Hua
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 117
中文關鍵詞: 鈦酸鍶鈦酸鋇赤鐵礦薄膜複合光催化
外文關鍵詞: SrTiO3, BaTiO3, hematite, thin film, composite, photocatalysis
相關次數: 點閱:83下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主題是利用射頻磁控濺鍍系統將SrTiO3、BaTiO3兩種具鈣鈦礦結構的單層薄膜分別以不同鍍膜時間沉積在矽基板上,藉此比較不同膜厚對光降解亞甲基藍(M.B.)的影響及探討兩種薄膜材料應用在光觸媒領域之可行性。此外,本實驗也選擇Fe2O3具有可見光能隙之光觸媒半導體材料,分別與SrTiO3及BaTiO3製作成複合薄膜,藉此提升光觸媒分解污染物之效益。
    從XRD圖譜中,我們可以看到單層的SrTiO3與BaTiO3薄膜隨著沉積時間增加,其繞射峰會逐漸出現。由FE-SEM影像上,我們可以看到在薄膜沉積時間愈久的情況下,薄膜厚度會愈厚且晶粒愈大;AFM影像可與FE-SEM表面形貌相互比較,其結果顯示在薄膜厚度愈厚的趨勢下,具有比較大的表面粗糙度(當SrTiO3厚度為220nm時,其Rq=3.896nm;BaTiO3厚度為386nm時,其Rq=5.630nm)。從UV-Vis量測中可知︰單層的SrTiO3及BaTiO3之薄膜在厚度愈薄的情形具有比較大的能隙(當SrTiO3厚度為32nm時,其能隙為4.12eV;BaTiO3厚度為59nm時,其能隙為4.37eV),且本實驗所有的單層薄膜其能隙都屬於紫外光範疇。單層薄膜的光催化結果顯示︰膜厚愈厚的樣品(SrTiO3厚220nm、BaTiO3厚386nm)有比較好的光催化效率。
    另外,Fe2O3的單層薄膜,從XRD的圖譜中,我們可以知道是屬於赤鐵礦相;FE-SEM、AFM影像中可以了解此薄膜其表面晶粒非常微小(<15nm)且表面平整度很高(Rq=0.721nm);本實驗赤鐵礦薄膜之能隙約為1.9eV。
    在雙層複合薄膜SrTiO3/BaTiO3、SrTiO3/Fe2O3及BaTiO3/Fe2O3的實驗部分,由XRD圖可知︰我們可以成功地製備出這些複合薄膜。從FE-SEM及AFM的影像中,得知SrTiO3/BaTiO3複合薄膜具有最大的表面粗糙度(Rq=5.561nm);且SrTiO3/BaTiO3複合薄膜只具有一個~3.65eV的紫外光能隙;SrTiO3/Fe2O3及BaTiO3/Fe2O3複合薄膜分別各擁有紫外光與可見光兩種能隙。紫外光降解有機染劑亞甲基藍(M.B.)之實驗結果顯示︰SrTiO3/BaTiO3 > SrTiO3 > BaTiO3 > BaTiO3/Fe2O3 > SrTiO3/Fe2O3;可見光降解M.B.實驗結果則顯示︰SrTiO3/Fe2O3 > BaTiO3/Fe2O3 > SrTiO3/BaTiO3 > SrTiO3 > BaTiO3。

    In this study, the SrTiO3 and BaTiO3 perovskite thin films are deposited on Si substrates with different deposition time using RF magnetron sputtering system. We want to investigate the influence of film thickness on the photodegradation of Methylene blue (M.B.) and the photocatalytic properties of this kind of materials. Furthermore, we also select Fe2O3 thin film, whose band gap is within the range of visible-light, to couple with SrTiO3 and BaTiO3 film to promote the photocatalytic activity of the films.
    From the XRD pattern, it is observed that the diffraction peaks gradually appear with the increasing deposition time. The FE-SEM image also shows the grain size and film thickness increase with an increase of deposition time. The AFM result exhibits a more rough surface in a thicker thin film. It is also found that the band gap increases with the decreasing film thickness and it belongs to the range of UV-light. This reveals a higher photodegradation for a thicker perovskite thin film.
    As for the Fe2O3 thin film, it has the hematite structure. Its grain size is very small and the surface roughness is very low, observed by the FE-SEM and AFM images. The band gap of Fe2O3 film is 1.9 eV, which is in the range of visible light. For the composite of SrTiO3/BaTiO3, SrTiO3/Fe2O3 and BaTiO3/Fe2O3, the FE-SEM and AFM results show that SrTiO3/BaTiO3 film has the highest surface roughness and its band gap is 3.65 eV while the band gap of SrTiO3/Fe2O3 and BaTiO3/Fe2O3 films is within the range of UV-light and Vis-light. The ability of photodegradation on M.B. under ultraviolet light irradiation shows SrTiO3/BaTiO3 > SrTiO3 > BaTiO3 > BaTiO3/Fe2O3 > SrTiO3/Fe2O3. However, the photocatalytic activity under visible light irradiation shows SrTiO3/Fe2O3 > BaTiO3/Fe2O3 > SrTiO3/BaTiO3 > SrTiO3 > BaTiO3.

    目錄 中文摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 VIII 表目錄 X 第一章 諸論 1 1-1 前言 1 1-2 實驗目的 3 第二章 文獻回顧 8 2-1 材料簡介 8 2-1-1 鈦酸鍶 9 2-1-2 鈦酸鋇 10 2-1-3 赤鐵礦 11 2-2 光催化原理 12 2-3 動力反應模式 16 2-4 光催化之形式 18 2-4-1 貴金屬修飾 18 2-4-2 複合型半導體化合物 19 2-4-3 過渡金屬離子修飾 22 2-5 薄膜沉積 24 2-5-1 薄膜沈積機制 25 2-5-2 薄膜形成的三種模式 30 2-5-3 薄膜微觀結構 31 2-6 濺鍍理論 32 2-6-1 直流輝光放電 33 2-6-2 射頻濺射 35 2-6-3 磁控濺鍍 36 2-6-4 反應性濺射 37 第三章 實驗步驟與方法 38 3-1 實驗流程 38 3-1-1 實驗材料 39 3-1-2 實驗儀器 40 3-2 陶瓷靶材製作 41 3-3 基板清洗 44 3-4 製備薄膜 45 3-5 薄膜特性分析 46 3-5-1 X光繞射儀 46 3-5-2 場發射型電子顯微鏡 47 3-5-3 固態紫外光-可見光光譜儀 48 3-5-4 液態紫外光-可見光光譜儀 50 3-5-5 原子力顯微鏡 51 3-5-6 X光光電子能譜儀 52 3-6 光催化分解有機染料 53 3-6-1 紫外光光催化分解有機染料 53 3-6-2 可見光光催化分解有機染料 54 第四章 結果與討論 55 4-1 SrTiO3與BaTiO3單層薄膜 55 4-1-1 XRD 55 4-1-2 FE-SEM 59 4-1-3 AFM 63 4-1-4 UV-Vis光譜儀 67 4-1-5 XPS 71 4-1-6 紫外光降解有機染料 75 4-2 Fe2O3單層薄膜 82 4-2-1 Fe2O3薄膜特性 82 4-2-2 可見光降解有機染料 84 4-3 複合薄膜 86 4-3-1 XRD 86 4-3-2 FE-SEM 88 4-3-3 AFM 89 4-3-4 UV-Vis光譜儀 91 4-3-5 複合薄膜之紫外光降解M.B.比較 93 4-3-6 複合薄膜之可見光降解M.B.比較 99 第五章 結論 102 5-1 不同厚度SrTiO3及BaTiO3薄膜之比較 102 5-2 單層薄膜Fe2O3之特性 103 5-3 單層薄膜與複合薄膜之比較 103 參考文獻 106 圖目錄 圖1-1 太陽光光波段分佈 7 圖2-1 典型鈣鈦礦之結構 9 圖2-2 鈦酸鋇結構隨溫度變化之轉變圖 11 圖2-3 半導體價帶、導帶相對於標準氫電極的標準電位(pH=1) 12 圖2-4 光激發半導體之示意圖 14 圖2-5 金屬修飾半導體光觸媒粒子 19 圖2-6 複合半導體激發後之電子轉移圖:(A)光激發產生之電子,遷移至未被激發之半導體上,(B)兩種半導體皆被激發之電子轉移 21 圖2-7 過渡金屬相對於TiO2之能階位置 23 圖2-8 薄膜沈積成核、成長之過程 25 圖2-9 自由能與核團半徑相互關係圖 26 圖2-10 非均勻成核之示意圖 28 圖2-11 島核粗化機制之示意圖(a)奧斯華德吞併過程(b)燒結過程(c)原子團的遷移 29 圖2-12 薄膜形成的三種模式(A)島狀(B)層狀(C)混合生長 31 圖2-13 氣體壓力、基板溫度與薄膜之微結構相互間的關係 32 圖2-14 濺鍍之示意圖 33 圖2-15 直流輝光放電之示意圖 33 圖2-16 陰極電位降區之分佈 35 圖2-17 磁控濺鍍結構與電子運動路徑圖 36 圖3-1 實驗流程 39 圖3-2 靶材製作流程 41 圖3-3 SrTiO3及BaTiO3之升溫歷程 43 圖3-4 Fe2O3之升溫歷程 44 圖3-5 有機染劑(亞甲基藍)之檢量線 51 圖3-6 紫外光光降解有機染劑之裝置簡圖 53 圖3-7 利用可見光光降解有機染劑之裝置示意圖 54 圖4-1 (A)SrTiO3與(B)BaTiO3瑕燒後之XRD圖譜 57 圖4-2 SrTiO3不同沉積時間之XRD圖譜 58 圖4-3 BaTiO3不同沉積時間之XRD圖譜 58 圖4-4 SrTiO3之FE-SEM影像(A)0.5hr(B)1.5hr(C)3.0hr(D)4.0hr 61 圖4-5 BaTiO3之FE-SEM影像 (A)0.5hr(B)1.0hr(C)1.5hr(D)2.33hr(E)3.5hr 62 圖4-6 AFM圖(A)ST-32nm(B)ST-95nm(C)ST-170nm(D)ST-220nm 64 圖4-7 AFM圖(A)BT-59nm(B)BT-86nm(C)BT-150nm(D)BT-208nm(E)BT-386nm 66 圖4-8 SrTiO3薄膜不同厚度的反射值對波長之量測結果 69 圖4-9 SrTiO3薄膜不同厚度的能隙量測 70 圖4-10 BaTiO3薄膜不同厚度的反射值對波長之量測結果 70 圖4-11 BaTiO3薄膜不同厚度的能隙量測 71 圖4-12 ST-220nm的X光光電子能譜圖 73 圖4-13 ST-220nm的O1s之XPS能譜圖 73 圖4-14 ST-220nm的Ti2p之XPS能譜圖 74 圖4-15 BT-208nm的X光光電子能譜圖 74 圖4-16 BT-208nm的O1s之XPS能譜圖 75 圖4-17 BT-208nm的Ti2p之XPS能譜圖 75 圖4-18 SrTiO3薄膜不同厚度的M.B.降解程度 78 圖4-19 SrTiO3單層膜的擬一階方程計算 78 圖4-20 BaTiO3薄膜不同厚度的M.B.降解程度 79 圖4-21 BaTiO3單層膜的擬一階方程計算 79 圖4-22 Fe2O3-2.66hr之XRD繞射圖 83 圖4-23 Fe2O3-2.66hr之FE-SEM影像圖 83 圖4-24 Fe2O3-113nm之AFM圖 84 圖4-25 Fe2O3-113nm之UV-Vis圖 84 圖4-26 Fe2O3-113nm之紫外光降解M.B. 85 圖4-27 Fe2O3-113nm之可見光降解M.B. 85 圖4-28 SrTiO3/BaTiO3之XRD圖 86 圖4-29 SrTiO3/Fe2O3之XRD圖 87 圖4-30 BaTiO3/Fe2O3之XRD圖 87 圖4-31 FE-SEM影像圖(A)ST/BT (B)ST/F (C)BT/F 89 圖4-32 AFM圖(A)ST/BT (B)ST/F (C)BT/F 90 圖4-33 UV-Vis圖(A)ST/BT (B)ST/F (C)BT/F 92 圖4-34 單層薄膜ST-220、BT-208與複合薄膜ST/BT、ST/F、BT/F之(A)紫外光降解M.B.及(B)擬一階計算之結果 95 圖4-35 半導體能隙價帶與導帶位置 97 圖4-36 SrTiO3/BaTiO3、(SrTiO3 or BaTiO3)/Fe2O3複合半導體能階相對位置 97 圖4-37 單層薄膜ST-220、BT-208與複合薄膜ST/BT、ST/F、BT/F之可見光降解M.B. 101 圖4-38 氧缺陷能階存在於能隙中 101 表目錄 表一 SrTiO3光觸媒粉末處理污染物之前人研究 4 表二 SrTiO3光觸媒粉末分解水產氫之前人研究 5 表三 其它光觸媒粉末處理污染物之前人研究 6 表四 其它光觸媒粉末分解水產氫之前人研究 6 表五 BaTiO3和SrTiO3薄膜之鍍膜參數 46 表六 Fe2O3、SrTiO3/BaTiO3、SrTiO3/Fe2O3及BaTiO3/Fe2O3薄膜之濺鍍參數 46 表七 SrTiO3薄膜不同厚度之FE-SEM數據 63 表八 BaTiO3薄膜不同厚度之FE-SEM數據 63 表九 SrTiO3及BaTiO3薄膜不同厚度之AFM數據 66 表十 SrTiO3及BaTiO3薄膜不同厚度之能隙値 71 表十一 單層薄膜SrTiO3及BaTiO3在不同膜厚下,光降解M.B.之比較 80 表十二 單層薄膜SrTiO3及BaTiO3不同膜厚薄膜特性及光降解M.B.之比較 80 表十三 本研究單層薄膜與前人文獻之薄膜特性及紫外光光降解亞甲基藍之比較 81 表十四 ST-220、BT-208、ST/BT、ST/F及BT/F之紫外光光催化比較 96 表十五 ST-220、BT-208、ST/BT、ST/F及BT/F之薄膜特性及光催化比較 96 表十六 本研究複合薄膜與前人文獻之薄膜特性、紫外光及可見光光降解亞甲基藍比較 98

    [1]R.A. Donng, W.H. Chang, ‘Photoassisted Titanium Dioxide mediated degradation of Organophosphorus Pesticides by Hydrogen Peeoxide’, Journal of Photochemistry and Photobiology A: Chemistry, 107 (1997) 239-244

    [2]A. Fujishima, K. Honnda, ‘Electrochemical photolysis of water at a semiconductor electrode’, Nature, 238 (1972) 37-38

    [3]M.A. Fox, M.Y. Dulay, ‘Heterogeneous Photocatalysis’, Chemical Reviews, 93 (1995) 341-357

    [4]T.D. Nguyen-Phan, V.H. Pham, T.V. Cuong, S.H. Hahn, E.J. Kim,J.S. Chung, S.H. Hur, E.W. Shin, ‘Fabrication of TiO2 nanostructured films by spray deposition with high photocatalyticactivity of methylene blue’, Materials Letters, 64 (2010) 1387-1390

    [5]H.W. Choi, E.J. Kim, S.H. Hahn, ‘Photocatalytic activity of Au-buffered WO3 thin films prepared by RF magnetron Sputtering’, Chemical Engineering Journal, 161 (2010) 285–288

    [6]J. Shang, W. Yao, Y. Zhu, N. Wu, ‘Structure and photocatalytic performances ofglass/SnO2/TiO2 interface composite film’, Applied Catalysis A: General, 257 (2004) 25–32

    [7]Y.H. Jang, S.T. Kochuveedu, M.A. Cha, Y.J. Jang, J.Y. Lee, J. Lee, J. Lee, J. Kim, D.Y. Ryu, D.H. Kim, ‘Synthesis and photocatalytic properties of hierarchical metal nanoparticles/ZnO thin films hetero nanostructures assisted by diblock copolymer inverse micellar nanotemplates, Journal of Colloid and Interface Science, 345 (2010) 125–130

    [8]E.S. Mora, E.G. Barojas, E.R. Rojas, R.S. Gonza´lez, ‘Morphological, optical and photocatalytic properties of TiO2–Fe2O3 multilayers’, Solar Energy Materials & Solar Cells, 91 (2007) 1412–1415

    [9]Y.J. Chi, H.G. Fu, L.H. Qi, K.Y. Shi, H.B. Zhang, H.T Yu, ‘Preparation and photoelectric performance of ITO/TiO2/CdS composite thin films’, Journal of Photochemistry and Photobiology A: Chemistry, 195 (2008) 357–363

    [10]Y. Liua, L. Xie, Y. Li, R. Yang, J. Qu, Y. Li, X. Li, ‘Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation’, Journal of Power Sources, 183 (2008) 701–707

    [11]J.W. Liua, G. Chen, Z.H. Li, Z.G. Zhang, ‘Hydrothermal synthesis and photocatalytic properties of ATaO3 and ANbO3(A =Na and K)’, International Journal of Hydrogen Energy , 32 (2007) 2269–2272

    [12]S. Mozia, ‘Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review’, Separation and Purification Technology, 73 (2010) 71–91

    [13]U.I. Gaya, A.H. Abdullah, ‘Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems’, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9 (2008) 1–12

    [14]K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, P. Kajitvichyanukul, R. Krishnan-Ayer, ‘Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media’, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9 (2008) 171–192

    [15]J. Wang, S. Yin, M. Komatsu, T. Sato, ‘Lanthanum and nitrogen co-doped SrTiO3 powders as visible light sensitive photocatalyst’, Journal of the European Ceramic Society, 25 (2005) 3207–3212

    [16]L. Chen, S. Zhang, L. Wang, D. Xue, S. Yin, ‘Photocatalytic activity of Zr:SrTiO3 under UV illumination’, Journal of Crystal Growth, 311 (2009) 735–737

    [17]J. Wang, S. Yin, M. Komatsu, Q. Zhang, F. Saito, T. Sato, ‘Photo-oxidation properties of nitrogen doped SrTiO3 made by mechanical activation’ , Applied Catalysis B: Environmental, 52 (2004) 11–21

    [18]J. Wang, H. Li, H. Li, S. Yin, T. Sato, ‘Preparation and photocatalytic activity of visible light-active sulfur and nitrogen co-doped SrTiO3’, Solid State Sciences, 11 (2009) 182-188

    [19]T. Ohno, T. Tsubota, Y. Nakamura, K. Sayama, ‘Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light’, Applied Catalysis A: General, 288 (2005) 74–79

    [20]C. Chang, Y.H. Shen, ‘Synthesis and characterization of chromium doped SrTiO3 photocatalyst’, Materials Letters, 60 (2006) 129–132

    [21]H. Kato, A. Kudo, ‘Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium’, Journal of Physical Chemistry B, 106 (2002) 5029-5034

    [22]R. Niishiro, H. Kato, A. Kudo, ’ Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions, Journal of Physical Chemistry, 7 (2005) 2241–2245

    [23]R. Konta, T. Ishii, H. Kato, A. Kudo, ’ Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation’, Journal of Physical Chemistry B, 108 (2004) 8992-8995

    [24]J.W. Liu, G. Chen, Z.H. Li, Z.G. Zhang, ‘Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3’, Journal of Solid State Chemistry, 179 (2006) 3704–3708

    [25]T. Ishii, H. Kato, A. Kudo, ‘H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation’, Journal of Photochemistry and Photobiology A: Chemistry, 163 (2004) 181–186

    [26]S. Song, L. Xu, Z. He, H. Ying ,J. Chen, X. Xiao, B. Yan, ‘Photocatalytic degradation of C.I. Direct Red 23 in aqueous solutions under UV irradiation using SrTiO3/CeO2 composite as the catalyst’, Journal of Hazardous Materials, 152 (2008) 1301–1308

    [27]H. Zhang, X. Wu, Y. Wang, X. Chen, Z. Li, T. Yu, J. Ye, Z. Zou,‘Preparation of Fe2O3/SrTiO3 composite powders and their photocatalytic properties’, Journal of Physics and Chemistry of Solids, 68 (2007) 280–283

    [28]T. Tsumura, K. Sogabe, M. Toyoda, ‘Preparation of SrTiO3-supported TiO2 photocatalyst’, Materials Science and Engineering B, 157 (2009) 113–115

    [29]H. Zhang, S. Ouyang, Z. Li, L. Liu, T. Yu, J. Ye, Z. Zou, ‘Preparation, characterization and photocatalytic activity of polycrystalline Bi2O3/SrTiO3 composite powders’, Journal of Physics and Chemistry of Solids, 67 (2006) 2501–2505

    [30]J.H. Yan, Y.R. Zhu, Y.G. Tang, S.Q. Zheng, ‘Nitrogen-doped SrTiO3/TiO2 composite photocatalysts for hydrogen production under visible light irradiation’, Journal of Alloys and Compounds, 472 (2009) 429–433

    [31]Y. Qin, G. Wang, Y. Wang, ‘Study on the photocatalytic property of La-doped CoO/SrTiO3 for water decomposition to hydrogen’, Catalysis Communications, 8 (2007) 926–930

    [32]T. Puangpetch, T. Sreethawong, S. Yoshikawa, S. Chavadej, ‘Synthesis and photocatalytic activity in methyl orange degradation of mesoporous-assembled SrTiO3 nanocrystals prepared by sol–gel method with the aid of structure-directing surfactant’, Journal of Molecular Catalysis A: Chemical, 287 (2008) 70–79

    [33]T. Puangpetch, T. Sreethawong, S. Yoshikawa, S. Chavadej, ‘Hydrogen production from photocatalytic water splitting over mesoporous-assembled SrTiO3 nanocrystal-based photocatalysts’, Journal of Molecular Catalysis A: Chemical, 312 (2009) 97–106

    [34]C.C. Hu, H. Teng, ‘Influence of structural features on the photocatalytic activity of NaTaO3 powders from different synthesis methods’, Applied Catalysis A: General, 331 (2007) 44–50

    [35]L.M.T. Martínez, A. Cruz-López, I. Juárez-Ramírez,M.E.M. la Rosa, ‘Methylene blue degradation by NaTaO3 sol–gel doped with Sm and La’, Journal of Hazardous Materials, 165 (2009) 774–779

    [36]A. Kudo, H. Kato, ‘Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting’, Chemical Physics Letters, 331 (2000) 373-377

    [37]L. G. Devi, G. Krishnamurthy, ‘TiO2/BaTiO3-assisted photocatalytic mineralization of diclofop-methyl on UV-light irradiation in the presence of oxidizing agents’, Journal of Hazardous Materials, 162 (2009) 899–905

    [38]Y. Yang, Y. Jiang, Y. Wang, Y. Sun, ‘Photoinduced decomposition of BaFeO3 during
    photodegradation of methyl orange’, Journal of Molecular Catalysis A: Chemical, 270 (2007) 56–60

    [39]S. Li, L. Jing, W. Fu, L. Yang, B. Xin, H. Fu, ‘Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation’, Materials Research Bulletin, 42 (2007) 203–212

    [40]Y. Li, S. Yao, L. Xue, Y. Yan, ‘Sol–gel combustion synthesis of nanocrystalline LaMnO3 powders and photocatalystic properties’, Journal of Materials Science, 44 (2009) 4455–4459

    [41]Y. Li, S. Yao, W. Wen, L. Xue, Y. Yan, ‘Sol–gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3’, Journal of Alloys and Compounds, 491 (2009) 560-564

    [42]X. L¨u, J. Xie, H. Shu, J. Liu, C. Yin, J. Lin, ‘Microwave-assisted synthesis of nanocrystalline YFeO3 and study of its photoactivity’, Materials Science and Engineering B, 138 (2007) 289–292

    [43]J. Lishan, D. Tong, L. Qingbiao, T. Yong, ‘Study of photocatalytic performance of SrFeO3-x by ultrasonic radiation’, Catalysis Communications, 8 (2007) 963–966

    [44]X. Niu, H. Li, G. Liu, ‘Preparation, characterization and photocatalytic properties of REFeO3 (RE = Sm, Eu, Gd)’, Journal of Molecular Catalysis A: Chemical, 232 (2005) 89–93

    [45]J.Z. Kong, A.D. Li, H.F. Zhai, H. Li, Q.Y. Yan, J. Ma, D. Wu, ‘Preparation, characterization and photocatalytic properties of ZnTiO3 powders’, Journal of Hazardous Materials, 171 (2009) 918–923

    [46]M. Cardona, ‘Optical properties and Band structure of SrTiO3 and BaTiO3’, Physical Review Letters, 140 (1965) A651-A655

    [47]A.L. Linsebigler; G. Lu; Jr.J.T. Yates, ‘Photocatalysis on TiO2 surface: principles, mechanism, and selected results’, Chemical Reviews, 95 (1995) 735-758

    [48]薛宇航,鈦酸鍶鋇與鋯鈦酸鉛之人工晶格薄膜特性研究,清大材料碩士論文(2005)

    [49]R.J.H. Voorhoeve, ‘Advanced Materials in Catalysis’, Academic Press, New York, (1977), Chap. 5

    [50]吳朗,電子陶瓷-介電,全欣資訊圖書,(1994),149

    [51]S. Sakthivel, S.U. Geissen, D.W. Bahnemann, V. Murugesan, A. Vogelpohl, ‘Enhancement of photocatalytic activity by semiconductor heterojunctions:Fe2O3, WO3 and CdS deposited on ZnO’, Journal of Photochemistry and Photobiology A: Chemistry, 148 (2002) 283–293

    [52]E. Celik, A.Y. Yildiz, N.F. Ak Azem, M. Tanoglu, M. Toparli, O.F. Emrullahoglu, I. Ozdemir, ‘Preparation and characterization of Fe2O3–TiO2 thin films on glass substrate for photocatalytic applications’, Materials Science and Engineering B, 129 (2006) 193–199

    [53]W. Choi; A. Termin, M.R. Hoffmann, ‘The Role of Metal-Ion Dopants in Quantum-Sized TiO2: Correlation Between Photoreactivity and Charge-Carrier Recombination Dynamics’, Journal of Physical Chemistry, 98 (1994) 13669-13679

    [54]M. Gratzel, “Photocatalysis Fundamentals and Applications”, N. Serpone, E. Pelizzetti, ed., (1989), p123

    [55]J.M. Herrmann, J. Disdier, P. Pichat, ‘Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination’, Chemical Physics Letters, 108 (1984) 618-622

    [56]J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T-W. Chu, D.H. Olson, E.W. Sheppard, S.B. Higgins, J.L. Schlenker, ‘A new family of mesoporous molecular sieves prepared with liquid crystal templates’, Journal of the American Chemical Society, 114 (2002) 10834-10843

    [57]I. Hua, U. Pfalzer-Thompson, ‘Ultrasonic irradiation of Carbofuran: Decomposition kinetics and reactor characterization’, Water Resources Research, 35 (2001) 1445-1452

    [58]W. Mu., J.M. Herrmann, P. Pichat, ‘Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2’, Catalysis Letters, 3 (1989) 73-84

    [59]C. Perego, P. Villa, ‘Catalyst preparation methods’, Catalysis Today, 34 (1997) 281-305

    [60]C. Contesu, A. Contescu, Schwarz, ‘Methods for Preparation of Catalytic Materials’, Chemical Reviews , 95 (1995) 477-510

    [61]R. Campostrini, G. Carturan, L. Palmisano, M. Schiavello, A. Sclafani, ‘Sol-gel derived anatase TiO2: morphology and photoactivity’, Materials Chemistry and Physics, 38 (1994) 277-283

    [62]N. Serpone, ‘Relative photonic efficiencies and quantum yield in heterogeneous photocatalysis.’, Journal of Photochemistry and Photobiology A: Chemistry, 104 (1997) 1-12

    [63]J.M. Herrmann, ‘Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants.’, Catalysis Today, 53 (1999) 115-129

    [64]S. Sato, J.M. White, ‘Photodecomposition of Water Over Pt/TiO2 Catalysts’, Chemical Physics Letters, 72 (1980) 83-86

    [65]K. Hirano, H. Asayama, A. Hoshino, H. Wakatsuki, ‘Metal Power Addition Effect on the Photocatalytic Reactions and the Photo-generated Electric Charge Collected at an Inert Electrode in Aqueous TiO2 Suspensions’, Journal of Photochemistry and Photobiology A: Chemistry, 110 (1997) 307-311

    [66]D.F. Ollis, H. Al-Ekabi (Eds.), ‘Photocatalytic Purification and Treatment of Water and Air’, Elsevier: Amsterdam, (1993) p733-737

    [67]D.F. Ollis, E. Pelizzetti, N. serpone, ‘Destruction of water contaminants.’, Environmental Science and Technology, 25 (1991) 1523-1529

    [68]N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, ‘Exploiting the Interparticle electron Transfer Process in the Photocatalysed:Chemical Evidence for Electron and Hole Transfer Between Coupled Semiconductor’, Journal of Photochemistry & Photobiology A: Chemistry, 85 (1995) 247-255

    [69]K.R. Gopidas, M. Bohorquez, P.V. Kamat, ‘Photophysical and photochemical aspects of coupled semiconductors :charge transfer processes in colloidal cadmium sulfide – titania and cadmium sulfide silver(I) iodide systems(II)’, Journal of Physical Chemistry, 94 (1990) 6435-6440

    [70]M.P. Thekaekara, ‘Solar radiation measurement techniques and instrumentation. In: Solar energy’, Pergamon, New York, 18 (1976) 309-325

    [71]J.D. Jackson, ‘Classical Electrodynamics’, Wiley& sons: New York, (1975), p 424

    [72]莊達人,VLSI 製造技術,高立圖書股份有限公司,(1995),頁146-160

    [73]Milton Ohring, ‘The Materials Science of Thin Films’ (Academic Press, 1992, 2002)

    [74]J.A. Thornton, ‘Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings’, Journal of Vaccum Science Technology, 11 (1974) 666-698

    [75]M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, J.M. Thomas, ‘Photocatalysis for new energy production’, Catalysis Today, 122 (2007) 51–61

    [76]田民波,薄膜技術與薄膜材料,五南,(2007),頁229-254

    [77]R.W. Berry, P.M. Hall, M.T. Harris, ‘Thin Film Technology’, Van Nostrand Reinhold, (1980), p201

    [78]J.L. Vossen, W. Kern, ‘Thin Film Process’, Academic Press, New York, (1978), p134

    [79]F. Shinoki, A. Itoh, ‘Mechanism of rf reactive sputtering’, Journal of Applied Physics, 46 (1975) 3381-3384

    [80]E.J. Bienk, H. Jensen,G. Sorensen, ‘Influence of the reactive gas flow on the properties of AlN sputter-deposited films’, Materials Science & Engineering, A140 (1991) 696-701

    [81]汪建民主編,材料分析,中國材料科學學會,(2006) 章3、6、11、13

    [82]D.G. Barton, M. Shtein, R.D. Wilson, S.L. Soled, E. Iglesia, ‘Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures’, Journal of Physical Chemistry B, 103 (1999) 630-640

    [83]J. Tauc, ‘Optical properties and electronic structure of amorphous Ge and Si’, Materials Research Bulletin, 3 (1968) 37-46

    [84]N.H. Cho, S.H. Nam, H.G. Kim, ‘Preparation of Strontium Titanate Thin Film on Si Substrate by Radio Frequency Magnetron Sputtering’, Journal of Vaccum Science Technology, A10 (1992) 87-91

    [85]R. Thomas, D.C. Dube, M.N. Kamalasanan, S. Chandra, A.S. Bhalla, ‘Structural, electrical and low temperature dielectric properties of sol-gel derived SrTi03 thin films’, Journal of Applied Physics, 82 (1997) 4484-4488

    [86]P.C. Joshi, S.B. Krupanidhi, ‘Structural and Electrical Characteristics of SrTiO3 Thin Films for Dynamic Random Access Memory Applications’, Journal of Applied Physics, 73 (1993) 7627-7634

    [87]S. Kim, S. Hishita, ‘Growing BaTiO3 thin films on Si(100) with MgO-buffer layers by sputtering’, Thin Solid Film., 281-282 (1996) 449-452

    [88]V.S. Dharmadhikari, W.W. Grannemann, ‘Photovoltaic properties of ferroelectric BaTiO3 thin films rf sputter deposited on silicon’, Journal of Applied Physics, 53 (1982) 8988-8992

    [89]R. Dholam, N. Patel, M. Adami, A. Miotello, ‘Physically and chemically synthesized TiO2 composite thin films for hydrogen production by photocatalytic water splitting’, international journal of hydrogen energy, 33 (2008) 6896-6903

    [90]H. Sakai, H. Kawahara, M. Shimazaki, M. Abe, ‘Preparation of ultrafine titanium dioxide particles using hydrolysis and condensation reactions in the inner aqueous phase of reversed micelles: effect of alcohol addition.’, Langmuir, 14 (1998) 2208-2212

    [91]J.H. Ma, Z.M. Huang, X.J. Meng, S.J. Liu, X.D. Zhang, J.L. Sun, J.Q. Xue, J.H. Chu, J. Li, ‘Optical properties of SrTiO3 thin films deposited by radio-frequency magnetron sputtering at various substrate temperatures’, Journal of Applied Physics, 99 (2006) 033515-1-033515-5

    [92]D. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, ‘Band gap energies of sol-gel-derived SrTiO3 thin films’, Applied Physics Letters., 79 (2001) 3767-3769

    [93]P. Pasierb, S. Komornicki, M. Radecka, ‘Struccctural and Optical Properties of Sr1-xBaxTiO3 Thin Films prepared by RF Sputtering’, Thin Solid Films, 324 (1998) 134–140

    [94]E.L. Miller, D. Paluselli, B Marsen, R.E. Rocheleau, ‘Low-Temperature Reactively Sputtered Iron Oxide for Thin Film Devices’, Thin Solid Films, 466 (2004) 307–313

    [95]F. Meng, X. Song, Z. S, ‘Photocatalytic activity of TiO2 thin films deposited by RF magnetron sputtering’, Vacuum, 83 (2009) 1147–1151

    [96]R. Gunnarsson, A.S. Kalabukhov, D. Winkler, ‘Evaluation of recipes for obtaining single terminated perovskite oxide substrates’, Surface Science, 603 (2009) 151–157

    [97]H.L. Cai, X.S. Wu, J. Gao, ‘Effect of oxygen content on structural and transport properties in SrTiO3−x thin films’, Chemical Physics Letters, 467 (2009) 313-317

    [98]G. Delhaye, M.E. Kazzi, M. Gendry, G. Hollinger, Y. Robach, ‘Hetero-epitaxy of SrTiO3 on Si and control of the interface’, Thin Solid Films, 515 (2007) 6332– 6336

    [99]S.A. Nasser, ‘X-ray photoelectron spectroscopy study on composition and structure of BaTiO3 thin films deposited on silicon’, Applied Surface Science, 157 (2000) 14–22

    [100]E.K. Evangelou, N. Konofaos, X. Aslanoglou, S. Kennou, C.B. Thomas, ‘Characterisation of BaTiO3 thin films on p-Si’, Materials Science in Semiconductor Processing, 4 (2001) 305–307

    [101]C.C. Chang, J.Y. Chen, T.L. Hsu, C.K. Lin, C.C. Chan, ‘Photocatalytic properties of porous TiO2/Ag thin films’,Thin Solid Films, 516 (2008) 1743–1747

    [102]C.C. Chan, C.C. Chang, W.C. Hsu, S.K. Wang, J. Lin, ‘Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films’,Chemical Engineering Journal ,152 (2009) 492–497

    [103]T. Abe, Y. Tachibana, T. Uematsu, M. Iwamoto, ‘Preparation and characterization of Fe2O3 nanoparticles in mesoporous silicate’, Journal of the Chemical Society, Chemical Communications, 16 (1995) 1617-1618

    [104]O. Akhavan, R. Azimirad, ‘Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation’, Applied Catalysis A: General, 369 (2009) 77–82

    [105]M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, ‘A review and recent developments in photocatalytic water splitting using TiO2 for hydrogen production’, Renewable and Sustainable Energy Reviews, 11 (2007) 401–425

    [106]D. Jing, L. Guo, L. Zhao, X. Zhang, H. Liu, M. Li, S. Shen, G. Liu, X. Hu, X. Zhang, K. Zhang, L. Ma, P. Guo, ‘Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration’, International journal of hydrogen energy, 35 (2010) 7087-7097

    [107]B. Gao, Y.J. Kim, A.K. Chakraborty, W.I. Lee, ‘Efficient decomposition of organic compounds with FeTiO3/TiO2 heterojunction under visible light irradiation’, Applied Catalysis B: Environmental, 83 (2008) 202–207

    [108]M. Kitano, M. Takeuchi, M. Matsuoka, J.M. Thomas, M. Anpo, ‘Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts’, Catalysis Today, 120 (2007) 133–138

    [109]B. Liu, L. Wen, X. Zhao, ‘The structure and photocatalytic studies of N-doped TiO2 films prepared by radio frequency reactive magnetron sputtering’,Solar Energy Materials & Solar Cells, 92 (2008) 1–10

    [110]J. Wang, Z. Wang, H. Li, Y. Cui, Y. Du, ‘Visible light-driven nitrogen doped TiO2 nanoarray films: Preparation and photocatalytic activity’, Journal of Alloys and Compounds, 494 (2010) 372–377

    下載圖示 校內:2011-08-30公開
    校外:2011-08-30公開
    QR CODE