簡易檢索 / 詳目顯示

研究生: 林志明
Lin, Chih-Ming
論文名稱: 介電性質自動化量測系統之建立
The Development of the Automatic Measurement System for the Dielectric Properties
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 73
中文關鍵詞: 量測
外文關鍵詞: Automatic Measurement
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 今日的量測與控制系統多可用PC-based來完成,而儀器設計邁進“虛擬儀器”的時代,不僅設計時間縮短,更具有彈性擴充功能;以先進電腦技術與軟硬體開發平台導入儀器自動量測控制領域,使量測更有效率。
    產業界使用圖形監控系統日漸普遍,其中LabVIEW使用最為廣泛,因LabVIEW發展時間早,技術成熟且結合了功能程式寫作與結構化程式寫作兩個觀念。這些以圖控軟體為中心的系統,運用了一般電腦的運算、顯示以及鏈結能力,讓使用者有能力利用標準的電腦及廉價的硬體來建立自己的儀控系統。

    The Development of the Automatic Measurement System for the Dielectric Properties is the most common piezoelectric measurement system. In this report, we choose the Labview to measure the hard piezoelectric material, PMS, and the soft piezoelectric material, PZN, investigating the PMS content in the PZT-PMS-PZN system, and so on. The result shows that the measure system has the better measurement. In this report, we successfully reduced the design time and performance.

    摘要 I Abstract II 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 第二章材料介電原理與實驗架構 2 2-1 介電特性 2 2-1-1 介電常數(dielectric constant) 2 2-1-2 介電損失(dielectric loss) 2 2-2 影響介電材料特性之因素 4 2-2-1 極化現象 4 2-3 電性分析 6 2-3-1介電性 6 2-3-2 介電現象 6 2-4實驗架構 8 第三章 LabVIEW圖控軟體設計 9 3-1 LabVIEW簡介 9 3-2 資料擷取系統簡介 10 3-2-1 資料擷取系統的發展歷史 10 3-2-2 資料擷取用途 12 3-2-3 資料擷取系統與時代潮流 12 3-3 LabVIEW運作架構 14 3-3-1 LabVIEW是什麼? 14 3-3-2虛擬儀表(VI) 14 3-4 LabVIEW 與GPIB 15 3-4-1 GPIB 15 3.4.2 IEEE-488.2 19 3.4.3 LabVIEW 的 GPIB 虛擬儀器設計 20 3-5 LabVIEW 的 GPIB 虛擬儀器設計 27 3.6陶瓷體特性分析與量測 41 3.6.1 XRD 41 3.6.2 SEM 41 3.6.3 密度 41 3.6.4 電性量測 42 3.6.5 溫度特性量測 48 第四章 結果與討論 49 4.1 PZT-PMS-PZN陶瓷特性 49 4.1.1 微結構---XRD、結構及c/a ratio分析 49 4.1.2 SEM分及密度分析 55 4.1.3 居里溫度TC、介電常數εr與介電損失tanδ分析 58 第五章 結論 66 5.1 結論 66 5.2 未來展望 67 參考文獻 68

    參考文獻

    [1] S. Roberts, “Dielectric and piezoelectric properties of barium titanate” J. Phys. Rev., 71, 890 (1947).
    [2] B. Jaffe, R.S. Roth and S. Marzullo, “Properties of piezoelectric eramics in solid solution series PbTiO3-PbZrO3-PbO-SnO and PbTiO3-PbHfO3” J. Res. Nat. Bur. Stds., 55, 239 (1955).
    [3] Electric Ceramic
    [4] J. M. Herbert, Ferroelectric Transducers and Sensors, Gordon and Breach, New York (1982).
    [5] J. Hu, Y. Fuda, M. Katsuno and T.Yoshida, “Electrical properties of low temperature sintering step-down multilayer piezoelectric transformer” Jap. J. Appl. Phys., 38, 3208 (1999).
    [6] 惠汝生:LabVIEW 8.X圖控程式應用,全華科技圖書.
    [7] 蕭子健王智昱儲昭偉:虛擬儀控程式設計LabVIEW 7X,高立.
    [8] 惠汝生:LabVIEW 7.1 Express圖控程式應用,全華科技圖書.
    [9] P. Verardi, M. Dinescu, F. Craciun, R. Dinu, V. Sandu, L. Tapfer and A. Cappello, “Pulsed laser deposition of multilayer TiN/Pb(ZrxTi1-x)O3 for piezoelectric microdevices” Sensors and Actuators A., 74, 41 (1999).
    [10] 謝勝治:圖控程式語言LabVIEW,全華科技圖書.
    [11] K. Saegusa, “Preparation by a sol-gel process and dielectric properties of lead-zirconate-titanate glass-ceramic thin films” Jpn. J. Appl. Phys., 36, 3602 (1997).
    [12] D. E. Wittmer and R. C. Buchanan, “Low-temperature densification of lead-zirconate-titanate with vanadium pentoxide addtive” J. Am. Ceram. Soc., 64, 485 (1981).
    [13] Z. Gui, L. Li, S. Gao and X. Zhang, “Low-temperature sintering of lead-based piezoelectric ceramics” J. Am. Ceram. Soc., 72, 486 (1989).
    [14] S. Takahashi, “Sintering Pb(Zr,Ti)O3 ceramics at low temperature” Jpn. J. Appl. Phys., 19, 771 (1980).
    [15] Y. Fuda, K. Kumasaka, M. Katsuno, H. Sato, and Y. Ino, Jpn. J. Appl. Phys., Part 1 36, 3050 (1997).
    [16] J. H. Hu, Y. Fuda, M. Katsuno, and T. Yoshida, Jpn. J. Appl. Phys., Part 1 38, 3208 (1999).
    [17] M. Yamamoto, Y. Sasaki, A. Ochi, T. Inoue, and S. Hamamura, Jpn. J. Appl. Phys., Part 1 40, 3637 (2001).
    [18] T. Tsuchiya, Y. Kagawa, N. Wakatsuki, and H. Okamura, “Finite Element Simulation of Piezoelectric Transformers” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, no. 4, July (2001).
    [19] P. Laoratanakul, A. V. Carazo, P. Bouchilloux, and K. Uchino, “Unipoled Disk-type Piezoelectric Transformers” Jpn. J. Appl. Phys. 41, 1446 (2002)
    [20] L. Longtu, Z. Ningxin, B. Chenyang, C. Xiangcheng, and G. Zhilun, “Multilayer piezoelectric ceramic transformer with low temperature sintering” J. Mater. Sci., 41, 155 (2006).
    [21] K. T. Chang, H. C. Chiang, and K. S. Lyu, “Effect of electrode layouts on voltage gain characteristics for ring-shaped piezoelectric transformers” Sensors and Actuators A, 141, 166 (2008).
    [22] Lin Sun, Chude Feng, Qingchi Sun, Hua Zhou, “Study on Pb(Zr,Ti)O3-
    Pb(Zb1/3Nb2/3)O3-Pb(Sn1/3Nb2/3)O3-Pb(Mn1/3Sb2/3)O3 quinary system pie-
    zoelectric ceramics” Materials Science and Engineering B, 122, 61 (2005).
    [23] Z. P. Yang, Y. F. Chang, X. M. Zong, J. K. Zhu, “Preparation and properties of PZT-PMN-PMS ceramics by molten slat synthesis” Materials Letters, 59, 2790 (2005).
    [24] Z. P. Yang, R. Zhang, L. L. Yang, Y. F. Chang, “Effects of Cr2O3 doping on the electrical properties and the temperature stabilties of PNW-PMN PZT ceramics” Materials Research Bulletin, 42, 2156 (2007).
    [25] Z. P. Yang, X. L. Chao, C. Kang, R. Zhang, “Low temperature sintering and properties of piezoelectric PZT- PFW- PMN ceramics with YMnO3 addition” Low temperature sintering and properties of piezoelectric PZT-
    PFW-PMN ceramics with YMnO3 addition” Materials Research Bulletin, 43, 38 (2008).
    [26] H. L. Du, Z. B. Pei, W. C. Zhou, F. Luo, S. B. Qu, “Effect of addition of MnO2 on piezoelectric properties of PNW-PMS-PZT eramics”Materials Science and Engineering A, 421, 286 (2006).
    [27] Z. P. Yang, H. Li, X. M. Zong, Y. F. Chang, “Structure and electriacal properties of PZT- PMS-PZN piezoelectirc ceramics” Journal of the European Ceramic Society, 26, 3197 (2006).
    [28] 汪建民, “陶瓷技術手冊 (上)” 金華科技圖書, 100, (1999).
    [29] D. L. Corker, R .W. Whatmore, E. Ringgaard and W. W. Wolny, “Liquid phase sintering of PZT ceramics” J. Euro. Ceram. Soc., 20, 2039 (2000).
    [30] 吳朗, “電子陶瓷(壓電)” 全欣科技圖書, 7 (1994).
    [31] B. Jaffe, W. R. Cook and H. Jaffe, “Piezoelectric Ceramics”, Cleveland, Ohio, 25 (1971).
    [32] B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, Cleveland, Ohio (1971).
    [33] A. J. Moulson and J. M. Herbert, “Electroceramics”, 347 (2003).
    [34] 邱碧秀, “電子陶瓷材料” 全欣科技圖書, 50 (1997).
    [35] 吳朗, “電子陶瓷(介電)” 全欣科技圖書, 69-73 (1994).
    [36] J. L. Du, J. H. Hu, K. J. Tseng, C. S. Kai, and G. C. Siong, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 579 (2006).
    [37] 邱良祥, “環形壓電變壓器應用於直流電源轉換器之研究” ,國立成功大學電機工程學系碩士論文, 2002.
    [38] 張博舜, “圓盤形壓電變壓器之研究” ,國立高雄應用科技大學機械與精密工程研究所碩士論文, 2007.
    [39] G. Mingsen, D. M. Lin, K. H. Lam, S. Wang, Helen L. W. Chan, and X. Z. Zhao, “A lead-free piezoelectric transformer in radial vibration modes” Review of Scientific Instruments 78, 035102 (2007).
    [40] “IRE Standards on Piezoelectric Crystals, Measurements of Piezoelectric
    Ceramics” Proc. IRE, 49, 1161 (1961).
    [41] M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, “Effect of Li substitution on the piezoelectric properties of potassium sodium niobate ceramics” Jpn. J. Appl. Phys., 44, 6136 (2005).
    [42] Y. D. Hou, M. K. Zhu, F. Gao, H. Wang, B. Wang, H.Yan and C. S. Tian, “Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.2(Zr0.5Ti0.5)0.8O3 ceramics” J. Am. Ceram. Soc., 87, 847 (2004).
    [43] K. Toshio, S. Toshimasa, T. Takaaki and D. Masaki, “Effects of manganese addition on piezoelectric properties of Pb(Zr0.5Ti0.5)O3” Jpn. J. Appl. Phys., 31, 3058 (1992).
    [44] S. M. Lee, S. H. Lee, C. B. Yoon, H. E. Kim and K. W. Lee, “Low-temperature sintering of MnO2-doped PZT-PZN Piezoelectric ceramics” J Electroceram 18:311-315 (2007).
    [45] 歐敏男, “La1-xAxMnO3(A=Ca、Sr)薄膜增強磁阻效應之研究” ,國立中山大學物理研究所碩士論文, 2000.
    [46] 蔡淑卿, “ZnO與ZnS摻猛螢光薄膜之發光性質研究” ,國立成功大學材料科學及工程研究所碩士論文, 2004.
    [47] 吳夏語, “鋅鈮鋯鈦酸鉛材料系統應用於超音波元件之電性和疲勞研究” ,國立台灣科技大學材料科技研究所碩士學位論文, 2006.
    [48] Z. G. Zhu, G. R. Li, Z. J. Xu, W. Z. Zhang and Q. R. Yin, “Effect of PMS modification on dielectric and piezoelectric properties in xPMS-(1-x)PZT ceramics” J. Phys. D: Appl. Phys. 38, 1464-1469 (2005).
    [49] C. S. Hong, S. Y. Chu, W. C. Su, R. C. Chang, H. H. Nien and Y. D. Juang, “The dependence of the synthesis condition on the dielectric behaviors of the 0.75Pb(Fe2/3W1/3)O3-0.25PbTiO3 based ceramics” Journal of Alloys and Compounds 459, 328-332 (2008).
    [50] E. M. Levin, C. R. Robbins and H. F. Mcmurdie, “Phase diagrams for ceramists” Am. Ceram. Soc., Ohio, 126 (1979).
    [51] C. C. Tsai, S. Y. Chu, and C. H. Lu, “Doping Effects of CuO Additives on the Properties of Low-Temperature-Sintered PMnN-PZT-Baesd Piezoele-
    ctric Ceramics and Their Applications on Surface Acoustic Wave Devices
    ’’IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, vol 56, No. 3, 660 (2009)

    無法下載圖示
    2029-08-14公開
    電子論文及紙本論文均尚未授權公開
    QR CODE