簡易檢索 / 詳目顯示

研究生: 吳靜昕
Wu, Jing-Sin
論文名稱: 聚乙烯醚/聚矽氧烷官能化之奈米碳管混摻全氟磺酸高分子質子傳導膜
Polyoxyalkylene/Polysiloxane Functionalized Carbon Nanotubes Reinforced Perfluorosulfonated Composite Membranes
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 81
中文關鍵詞: Nafion奈米碳管複合膜直接甲醇燃料電池
外文關鍵詞: Direct methanol fuel cell, Carbon nanotubes, Nafion, Composite membranes
相關次數: 點閱:99下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究製備新型的有機無機奈米碳管-高分子複合膜以應用於燃料電池之質子交換電解質,此碳管乃經由設計其表面分子結構以利質子傳導。 利用聚乙烯醚二胺 (XTJ-511) 改質奈米碳管以在碳管壁上形成對電子絕緣之親水性層,並於聚乙烯醚層外再接上交聯的聚矽氧烷及二氧化矽形成多層狀結構。 以混摻法將經化學改質之奈米碳管混於Nafion中形成複合膜。由FTIR分析結果顯示膜中的磺酸根之對稱吸收峰位移,XPS之N 1s發現膜中胺基多為被質子化的銨鹽,以及TGA中磺酸根裂解溫度的增加,顯示此含胺基之奈米碳管與Nafion之磺酸根可形成離子作用力,使得Nafion 牢固地接合在碳管表面。由TEM與SEM圖中可觀察到親水基分散在碳管表面而形成質子傳導之連續路徑。此傳導之連續路徑可讓膜材之導電度於130 oC之乾燥環境中維持在6.0x10-2 S/cm,並降低甲醇穿透係數至7.4x10-7 cm2/s。 無機聚矽氧烷導入後, 在奈米碳管表面再形成一層能阻絕電子傳遞、且幫助膜材與水分子結合的層狀交聯結構。 複合膜的結合水率(Bound water degree)隨著碳管比例增加而增加,同時聚矽氧烷的存在使得膜材中水的融點下降顯示與水的作用力增強。當利用聚矽氧烷化之碳管混摻Nafion時,複合膜的甲醇穿透係數可降低至1.9x10-7 cm2/s為商用Nafion-117之1/10,且於130oC時質子傳導度為1.1x10-3 S/cm遠高於Nafion-117之1.6x10-5 S/cm。

    A new class of organic-inorganic composite membrane is constructed as a proton exchange electrolyte for fuel cell application where the structures of the composite have been designed at the molecular scale to possess fast proton conduction. Polysiloxane-functionalized multiwall carbon nanotubes (CNTs) were synthesized by covalently grafting hydrophilic layers composed of polyoxyalkylene diamines (XTJ-511) and TEOS-reinforced polysiloxane layer-by-layer onto tube walls. The modified carbon nanotubes were blend with Nafion to form a proton conducting membrane. The incorporation of the amino-containing polymer onto CNTs help Nafion to coalesce strongly on the CNTs through ionic interaction between amine and sulfonate groups as evidenced by the shift of –SO3– symmetric stretching peak in the FTIR, the N 1s in XPS and the increase of decomposition temperature of sulfonate groups in TGA, provide continuous paths suitable for fast proton conduction (σ = 6.0  10-2 S/cm at 130 oC), and also reduce methanol crossover (7.4x10-7 cm2/s). The TEM and SEM images showed that the ionic domains exist along the axial orientation of CNT to form a proton conductive pathway. The incorporation of the inorganic polysiloxane layer onto CNT side-walls forms a resistance to effectively prohibit the electron conduction between the nanotubes. The bound water degree of the composite membranes increases as CNT content increases. The polysiloxane layer contributed to the increase in bound water degree (ca. 95%), lower water content (12.9 %), and decreased methanol permeability (1.9x10-7 cm2/s).

    Table of contents Abstract(English)....................... i 摘要………………… . ii 誌謝………............ iii Table of Contents................ iv List of Tables………………………. . vii List of Schemes…………………….. viii List of Figures…………………… ix Chapter 1. Introduction ………………………………………………… 1 1-1 Preface……………………………………………………………... 1 1-2 Types of fuel cells………………………………………………….. 1 1-3 Direct methanol fuel cells………………………………………….. 3 1-4 Membrane electrode assembly (MEA)……………………………... 5 1-5 Solid polymer electrolyte: proton exchange membrane……………. 8 1-5.1 Modified perfluorosulfonic acid proton exchange membranes 11 1-5.2 Functionalized sulfonic acid of hydrocarbon type proton exchange membranes………………………………………………….. 11 1-5.3 Organic-inorganic hybrid membranes……………………… 14 1-5.4 Base-acid couple content of proton exchange membranes…. 15 Chapter 2. Alternating current impedance spectroscopy……………… 17 2-1 Introduction of fundamental electrical circuits…………………….. 17 2-2 Analysis of AC impedance…………………………………………. 19 Chapter 3. Experimental section……………………………………….. 24 3-1 Materials…………………………………………………………... 24 3-2 Characterizations………………………………………………….. 25 3-3 Experimental Steps………………………………………………... 29 3-3.1 Synthesis of CNT-COOH…………………………………… 29 3-3.2 Synthesis of CNT-EO……………………………………….. 29 3-3.3 Preparation of the CNT-EO/Nafion membranes……………. 30 3-3.4 Preparation of the CNT-EO-Si/Nafion membranes…………. 31 Chapter 4. Results and discussion………………………………………. 33 4-1 Motive……………………………………………………………… 33 4-2 Qualitative Analysis of the amine content in CNT-EO…………….. 34 4-3 Characterization of CNT-EO/Nafion and CNT-EO-Si/Nafion composite membranes………………………………………………………… 34 4-4 TGA………………………………………………………………... 41 4-5 Microscopic characterization………………………………………. 43 4-6 Electron conductivity………………………………………………. 46 4-7 IEC values………………………………………………………….. 47 4-8 Swelling behavior………………………………………………….. 48 4-9 State of water………………………………………………………. 51 4-10 Proton conductivity measurements………………………………… 54 4-11 Methanol permeability……………………………………………... 58 4-12 Oxidation stability…………………………………………………. 61 Chapter 5. General conclusion…………………………………………... 62 References………………………………………………………………… 64

    1. James, L., Andrew, D. Fuel Cell Explained, John Weiley, England (2003).
    2. Arico, A. S.; Creti, P,; Giordano, N.; Antonucci, V.; Antonucci, P.L.; Chuvilin, A. J. Appl. Electrochem., 26, 959 (1996).
    3. Rikukawa, M., Sanui, K., Prog. Polym. Sci., 25, 1463 (2000).
    4. Hsu, W. Y., Gierke, T. D., J. Membr. Sci., 13, 307 (1983).
    5. James, L.; Andrew, D. Fuel Cell Explained, John Weiley, England (2003).
    6. Yang, Z. Y., Rajendran, R.G., Angew. Chem. Int. Ed., 44, 564 (2005).
    7. Kreuer, K. D., J. Membr. Sci., 185, 29 (2001).
    8. Ghassemi, H., McGrath, J. E., polymer, 45, 5847 (2004).
    9. Alberti, G., Casciola, M., Massinelli, L., Bauer, B.. J. Membr. Sci., 185, 73 (2001).
    10. Fu, Y. Z.; Manthiram, A., J. Power Source, 157, 222 (2006).
    11. Wang, F., Hickner, M., Kim, Y. S., Zawodzinski, T. A., McGrath, J. E.., J. Membr. Sci., 197, 231 (2002).
    12. Staiti, P., Lufrano, F., Arico, A. S., Passalacqua, E., Antonucci, V., J. Membr. Sci., 188, 71 (2001).
    13. Carretta, N., Tricoli, V., Picchioni, F., J. Membr. Sci., 166, 189 (2000).
    14. Miyatake, K., Shouji, E., Yamamoto, K., Tsuchida, E., Macromolecules, 30, 2941 (1997).
    15. Fang J. H., Guo, X. X., Harada, S., Watari, T., Tanaka, K., Kita, H., Okamoto, K. I., Macromolecules, 35, 9022 (2002).
    16. Honma, I., Takeda, Y., Bae,J. M., Solid State Ionics, 120, 255 (1999).
    17. Nakajima, H., Honma, I., Solid State Ionics, 148, 607 (2002).
    18. Honma, I., Nomura, S., Nakajima, H., J. Membr. Sci., 185, 83 (2001).
    19. Nakajima, H., Nomura, S., Sugimoto, T., Nishikawa, S., Honma, I., J. Electrochem. Soc., 149, A953 (2002).
    20. Staiti, P., Minutoli, M., Hocevar, S., J. Power Sources, 90, 231 (2000).
    21. Staiti, P., Minutoli, M., J. Power Sources, 94, 9 (2001).
    22. Staiti, P., Mater. Lett., 47, 241 (2001).
    23. Amarilla, J. M., Rojas, R. M., Rojo, J. M., Cubillo, M. J., Linares, A., Acosta, J. L., Solid State Ionics, 127, 133 (2000).
    24. Genova-Dimitrova, P., Baradie, B., Foscallo, D., Poinsignon, C., Sanchez, J. Y., J. Membr. Sci., 185, 59 (2001).
    25. Baradie, B., Poinsignon, C., Sanchez, J. Y., Piffard, Y., Vitter, G., Bestaoui, N., Foscallo, D., Denoyelle, A., Delabouglise, D., Vaujany, M., J. Power Sources, 74, 8 (1998).
    26. Poinsignon, C., Amodio, I., Foscallo, D., Sanchez, J. Y., Mater.Res. Soc. Symp. Proc., 548, 307 (2000).
    27. Bonnet, B., Jones, D. J., Roziere, J., Tchicaya, L., Alberti, G., Casciola, M., Massinelli, L., Baner, B., Peraio, A., Ramunni, E., J. New Mater. Electrochem. Syst., 3, 87 (2000).
    28. Zaidi, S. M. J., Mikhailenko, S. D., Robertson, G. P., Guiver, M. D., Kaliaguine, S., J. Membr. Sci., 173, 17 (2000).
    29. Nunes, S. P., Ruffmann, B., Rikowski, E., Vetter, S., Richau, K., J. Membr. Sci., 203, 215 (2002).
    30. Mikhailenko, S. D., Zaidi, S. M. J., Kaliaguine, S., Catal. Today, 67, 225 (2001).
    31. Honma, I., Takeda, Y., Bae, J. M., Solid State Ion., 120, 255 (1999).
    32. Popall, M., Du, X. M., Electrochim. Acta., 40, 2305 (1995).
    33. Qiao, J., Yoshimoto, N., Ishikawa, M., Morita, M., Chem. Mater., 15, 2005 (2003).
    34. Miyatake, K., Fukushima, K., Takeoka, S., Tsuchida, E., Chem. Mater., 11, 1171 (1999).
    35. Nagarale, R. K., Gohil, G. S., Shahi, V. K., Rangarajan, R., Macromolecules, 37, 10023 (2004).
    36. Rogriguez, D., Jegat, T., Trinquet, O., Grondin, J., Lassegues, J. C., Solid State Ion., 61, 195 (1993).
    37. Senadeera, G. K. R., Careem, M. A., Skaarup, S., West, K., Solid State Ion., 85, 37 (1996).
    38. Grondin, J., Rodriguez, D., Lassegues, J. C., Solid State Ion., 77, 70 (1995).
    39. Mecerreyes, D., Grande, H., Miguel, O., Ochoteco, E., Marcilla, R., Cantero, I., Chem. Mater., 16, 604 (2004).
    40. Qian, X., Gu, N., Cheng, Z., Yang, X., Wang, E., Dong, S., Mater. Chem. Phys., 74, 98 (2002).
    41. Gray, F. M., Solid Polymer Electrolytes: Fundamentals and Technological Application, VCH, New York (1991).
    42. Linford, R. G., Electrochemical Science and Technology of Polymers-2 (1990).
    43. Ko, F.H., Lee, C.Y., Ko, C.J., Chu, T.C., Carbon, 43, 727 (2005).
    44. Liu, J., Rinzler, A.G., Hongjie, D., Hafner, J.H., Kelley, B.R., Boul, P.J., Adrian, L., Terry, I., Konstantin, S., Huffman, C.B., Fernando, R.M., Shon, Y.S., Lee, T.R., Colbert, D.T., Smalley, R.E., Science, 280, 1253 (1998).
    45. Chen, J., Hamon, M.A., Hui, H., Chen, Y., Rao, A.M., Eklund, P.C., Haddon, R.C., Science, 282, 95 (1998).
    46. Wang, J., Fang, Z., Gu, A., Xu, L., Liu, F., J. App. Poly. Sci., 100, 97 (2006).
    47. Lowry, S. R.; Mauritz, K. A., J. Am. Chem. Soc., 102, 4665 (1980).
    48. Lage, L. G.; Delgado, P. G.; Kawano, Y. Eur., Polym. J., 40, 1309 (2004).
    49. Park, H. S.; Kim, Y. J.; Hong, W. H.; Choi, Y. S.; Lee, H. K., Macromolecules, 38, 2289 (2005).
    50. Tannenbaum, R.; Rajagopalan, M.; Eisenberg, A., J. Polym. Sci. Part B: Polym. Phys., 41, 1814 (2003).
    51. Bae, B.; Kim, D.; Kim, H.-J.; Lim, T.-H.; Oh, I.-H.; Ha, H. Y., J. Phys. Chem. B, 110, 4240 (2006).
    52. Almeida, S.H., Kawano, Y., J. Therm. Anal. Calorim., 58, 569 (1999).
    53. Park, H.S., Kim, Y.J., Hong, W.H., Lee, H.K., J. Memb. Sci., 272, 28 (2006).
    54. Moore El, B.R., Martin, C.R., Macromolecules, 22, 3549 (1989).
    55. Chen, G.X., Kim, H.S., Park, B.H., Yoon, J.S., Letters to the Editor / Carbon, 44, 3348 (2006).
    56. Kim, Y. S.; Dong, L.; Hickner, M. A.; Glass, T. E.; Webb, V.; McGrath, J. E. Macromolecules, 36, 6281 (2003).

    下載圖示 校內:2008-07-26公開
    校外:2008-07-26公開
    QR CODE