簡易檢索 / 詳目顯示

研究生: 羅維伸
Lo, Wei-Shen
論文名稱: 以影像去模糊方法獲得淺水區水下礫石粒徑資訊
Extraction of Gravel Size Information from Deblurred Through Water Image
指導教授: 王驥魁
Wang, Chi-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 109
中文關鍵詞: 去模糊點擴散函數盲目反摺積水下礫石粒徑資訊
外文關鍵詞: Deblurred, PSF, Blind deconvolution, underwater gravel size information
相關次數: 點閱:105下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用攝像設備架設於水面上對水下礫石進行拍攝時,受限水面因水流與風場影響而產生的動態變化,以及陽光因水面不平整而造成的水面波光影響,使得水下礫石粒徑資訊不易取得。水下攝影設備可應用於水深較深的區域,但水深小於40公分的淺水區域,水下攝像設備受限於作業空間,無法在此水深範圍使用。
    本研究使用水面上定點拍攝連續影像,並以時間上的平均濾波器重建一幅模糊水下影像。並利用紅點標做為推估PSF的參考影像,藉由兩次的R-L演算法的運算,獲得最佳的去模糊成果,以提升模糊影像的影像品質。獲得去模糊影像後,可對此影像中的礫石進行人工圈選,藉由水下的比例尺獲得粒徑分佈曲線,以了解水下礫石粒徑資訊。
    本研究並比較平均成果(模糊影像)、眾數成果與去模糊成果之優劣,其成果顯示去模糊成果,不管是在影像品質或是人工辨識出的粒徑分佈曲線上表現皆較為突出,可有效且穩定的獲得水下礫石粒徑資訊提供使用者使用。

    Underwater photography is useful for gathering physical information of the instream environment. Due to the wave actions at the water surface, taking high quality pictures in shallow water area (< 40 cm) is difficult. In addition, the use of underwater camera is impossible such environment.
    In this thesis, a method of applying two Richardson-Lucy iterations performance on long-exposure through water image, which is constructed from continues photographs by mean-based filter, is proposed. The red point target with known physical size is placed on the river bottom at the time of image acquisition in order to obtain the combined point spread function due to the surface wave action and water media. Finally, a deblurred image is produced by an iterative scheme of Lucy-Richardson algorithm. The proposed method is effective for correcting the picture of underwater gravels in shallow water that are distorted by waves, and the particle size distribution can be calculated from the deblurred image to derive the gravel size information.
    The comparison between the result of mean-based filter image(blurred image), mode-based filter image, and deblurred image is conducted. The result shows that the image quality and the particle size distribution of deblurred image is better, and the deblurred image is effective in deriving the underwater gravel.

    中文摘要 I ABSTRACT II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 前言 1 1-1 研究動機與目的 1 1-2 研究目標 5 第二章 研究方法 6 2-1實驗設備 6 2-2研究理論 10 2-2-1影像模糊化 10 2-2-2點擴散函數 12 2-2-3以反摺積運算求得去模糊影像 13 2-2-4盲目反摺積 15 2-3 R-L演算法迭代次數 16 2-4 影像去模糊 18 2-4-1 模糊亮度影像萃取 20 2-4-2仿真紅點影像生成 22 2-4-3 以反摺積推估PSF並篩選出候選PSF 23 2-4-4 最佳去模糊成果 24 2-5 礫石粒徑分佈曲線計算 24 第三章 資料處理 26 3-1資料 26 3-1-1數值模擬資料 26 3-1-2水槽模擬資料 27 3-1-3流況資料 29 3-1-4礫石影像資料 31 3-1-5現地卵石採集資料 34 3-2模糊影像之張數評估 36 3-2-1處理張數與亮度之關係 37 3-2-2處理張數與影像品質之關係 41 3-2-3處理張數與影像幾何之關係 44 第四章 成果與討論 47 4-1 PSF推估之可靠度 47 4-2 R-L演算法之去模糊能力 48 4-3現地成果比較 51 4-3-1影像解析力 52 4-3-2粒徑分佈曲線 63 4-4 現地水下礫石粒徑PSD 74 4-5 以影像圈選獲得粒徑資訊與現地卵石採集方法之比較 76 4-5-1無水區 76 4-5-2水下區 77 第五章 結論與建議 82 參考文獻 84 附錄 86

    經濟部水利署
    Http://www/wra.gov.tw, 2012年4月28日

    陳展翔,「以連續影像重建淺水區水下影像」,國立成功大學測量及空間資訊學系碩士學位論文,2010。

    Butler, J. B., Lane, S. N., and Chandler, J. H., “Through-Water Close Range Digital Photogrammetry in Flume and Field Environments,” Photogrammetric Record, Vol.17, p.419-439, (2002).

    Biggs, D. S. C. “Acceleration of Iterative Image Restoration Algorithms,” Applied Optics. Vol. 36. Number 8, pp. 1766–1775 (1997).

    Bunte, K., Abt, S. R., “Sampling Surface and Subsurface Particle-Size Distributions in Wadable Gravel- and Cobble-Bed Streams for Analyses in Sediment Transport, Hydraulics, and Streambed Monitoring,” United States Department of Agriculture, Forest Service, General Technical Report RMRS-GTR-74 (2001).

    Fish D A, Brinicombe A M, Pike E R, Walker J G. “Blind deconvolution by means of the Richardson-Lucy algorithm,” Journal of the Optical Society of America A, 12(1): 58–65 (1995).

    Graham, D. J., Reid, I., and Rice, S. P., “Automated Sizing of Coarse-Grained Sediments: Image-Processing Procedures,” Mathematical Geology, Vol.37, No.1, (2005).

    Graham, D. J., Reid, I., and Rice, S. P., “A transferable method for the automated grain sizing of river gravels,” WATER RESOURCES RESEARCH, Vol.41 (2005).

    Hanisch, R.J., R.L. White, and R.L. Gilliland. “Deconvolution of Hubble Space Telescope Images and Spectra,” Deconvolution of Images and Spectra (P.A. Jansson, ed.). Boston, MA: Academic Press, pp. 310–356 (1997).

    Lucy L. B., “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).

    Lane, S. N., “The measurement of river channel morphology using digital photogrammetry,” Photogramm. Rec., 16, 937–957, (2000).

    Mobley, C. D., Light and Water. Academic, New York, (1994).
    Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, 2nd Edition, Chapter 3, Prentice Hall, (2002).

    Richardson W. H., “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972).

    Salem Saleh Al-amri et. al. “A Comparative Study for Deblured Average Blurred Images,“ International journal on Computer Science and Engineering, Vol. 02, No. 03, 731-733 (2010).

    Whitman, M. W., Moran, E. H., and Ourso, R. T., “Photographic Techniques for Characterizing Streambed Particle Sizes,” Transactions of the American Fisheries Society, Vol.132, pp.605-610 (2003).

    Yuan L., Sun J., Quan L., and Shum H.-Y., “Image Deblurring with Blurred/Noisy Image Pairs,“ ACM Transaction on Graphics, Vol. 26, No. 3, Article 1, (2007).

    下載圖示 校內:2017-08-16公開
    校外:2017-08-16公開
    QR CODE