簡易檢索 / 詳目顯示

研究生: 涂勝龍
Tu, Sheng-Lung
論文名稱: 以花粉為染料吸附在TiO2薄膜上之光電性質研究
The optoelectronic properties of a pollen coated dye-sensitized TiO2 film
指導教授: 申永輝
Shen, Yun-Hwei
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 95
中文關鍵詞: 光電染敏薄膜綠色能源
外文關鍵詞: optoelectronic, dye-sensitized, film, green energy emerged
相關次數: 點閱:65下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類發展至今進入二十一世紀,全球的石油蘊藏量只能維持年20至30 年,然而不幸的是,拜工業發展後人類對能源的需求量前所未有的速度增加,導致解決能源危機問題具相當急迫性,人們必須正視此問題。近年來,原油的使用愈來愈頻繁,能源枯竭問題逐漸浮出。大量的使用化石燃料,使得大氣中二氧化碳含量大增,溫室效應日益嚴重。愈來愈多的人在關心、探討能源危機的問題,也愈來愈多的科學研究在找尋新的能源、綠色能源。
    本研究是用天然植物矮性牽牛花,具有多種不同顏色花朵特性,可以應用到太陽能光電技術上,即利用矮性牽牛花花朵來製作染料,將所製作的染料電池應用到氫能生產上,由實驗結果得知在矮性牽牛花的花朵染料,在可見光區657 nm會有明顯的吸收峯,所製作染料電池其最大電流為4.7*10-3 (A/cm2),最大電壓為0.27 V, 其光能轉換效率為1.27 %,而其氫能產率為3.14*10-05 (L/s*m2)。

    AS human development so far into the twenty-first century, the world's oil reserves can only be maintained for 20-30 years, Due to the development of post-human industrial, the demand for energy increases at an unprecedented rate, and leads to a considerable urgency to solve the energy crisis. In recent years, with more and more use of crude oil, energy depletion problems have gradually emerged. The use of large amounts of fossil fuels causes increasing carbon dioxide content in the atmosphere and worsening the greenhouse effect. As more and more people, discussing the energy crisis, a growing number of scientific studies looking for new sources of energy and green energy emerged.
    This study takes advantage of the natural plant dwarf morning glory. whit have a variety of flowers of different colors. and may be able to use in solar photovoltaic technology. Fries we dwarf morning glory flowers to produce dyes. for the manufacturer of dye-battery whit. can be applied to the hydrogen predation, experimental results indicated that the dwarf morning glory flower dye has an absorption peak of 657 nm The manufactured dye-battery has be obvious, a maximum current of 4.7 * 10-3 (A/cm2) and a maximum voltage of 0.27 V and a conversion efficiency of 1.27 % In general the hydrogen. yield can ranch 3.14 * 10-05 (L / s * m2).

    摘 要 III Abstract IV 誌 謝 V 第一章緒論 1 1.1 前言 1 1.2 研究目的 6 第二章文獻回顧 8 2-1太陽能電池 8 2-2 人工製造的“樹葉” 9 2-3 陽光驅動的“電子泵” 10 2-4染料敏化太陽能電池原理 11 2-5染料敏化太陽能電池[58-60] 15 2-6染料敏化太陽能電池的發電機制 16 2-8白金對電極 20 2-9照光下太陽能電池的表現 20 2-10 二氧化鈦多孔性薄膜電極 22 2-11葉綠素 27 第三章實驗材料與步驟 36 3.1實驗步驟 36 3.2分析儀器 43 3.2.1 二氧化鈦性質測定儀器 43 3.2.1.1 X光繞射分析儀(XRD) 43 3.2.1.2 場放射性掃描式電子顯微鏡(FE-SEM) 43 3.2.1.3紫外光-可見光吸收光譜儀(UV/Vis sepectrophotometer) 44 3.2.1.4電化學分析儀 45 3.3 染料敏化太陽能電池的製備 49 3.3.1 溶膠凝膠法合成奈米TiO2 paste 49 3.3.2 二氧化鈦薄膜電極的製備 49 3.3.3 二氧化鈦薄膜電極染料的吸附 50 第四章結果與討論 51 第五章結論 76 六、參考文獻 77

    [01] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238, 37 (1972)
    [02] N. Hanley, J. F. Shogren, B. White, Environmental economics in theory and practice, (1997).
    [03] N. Serpone, E. Pelizzetti (Eds.), Photocatalysis-Fundamentals and Applications, Wiley-Interscience, New York (1989).
    [4] M. Grätzel, Applied physics: Solar cells to dye for, Nature, 421, 586 (2003).
    [5] K. Tennakone, P. K. M. Bandaranayake, P. V. V. Jayaweera, A. Konno, G. R. R. A. Kumara, Dye-sensitized Composite Semiconductor Nanostructures, Physica E, 14, 190 (2002).
    [6]「超高效率太陽電池從愛因斯坦的光電效應談起」,文/蔡進譯,物理雙月刊第27 卷第四期(2005 年10 月號版), 第701 頁G. P. Smestad, Solar Energy Mater. Solar Cells, 82, 227(2004).
    [7]Michael Grätzel, Brian O'Regan. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353 (24): 737 (24 October 1991).

    [8] Y. You, S. Zhang, L. Wan, D. Xu, Preparation of continuous TiO2 fibers by sol–gel method and its photocatalytic degradation on formaldehyde, Applied Surface Science, 258, 3469 (2012).
    [9] G. M. Whitesides, B. Grzyboski, Molecular Self-Assembly papers • Beyond molecules: Self-assembly of mesoscopic and macroscopic components, Science 295, 2418 (2002).
    [10] A. Kay, M. Grätzel, Photosensitization of Titania Solar Cells with Chlorophyll Derivatives and Related Natural Porphyrins, J. Phys. Chem, 97, 6272 (1993).
    [11] S. U. M. Khan, Al.-S. Mofareh, W. B. I. Jr., Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 297, 2243 (2002)
    [12] E. W. McFarland and J. Tang, A photovoltaic device structure based on internal electron emission, Nature 421, 616 (2003).
    [13] S. Huang, P.-Ju. Chueh, Y.-W. Lin, T.-S. Shih, S.-M. Chuang, Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure, Toxicology and Applied Pharmacology, 241, 182 (2009)
    [14] H. Yu, J. Yu, B. Cheng, M. Zhou, Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons, Journal of Solid State Chemistry, 179, 349 (2006)

    [15] L. Dong, K. Cheng, W. Weng, Chenlu Song, P. Du, G. Shen, G. Han, Hydrothermal growth of rutile TiO2 nanorod films on titanium substrates, Thin Solid Films, 519, 4634 (2011)
    [16] K. Byrappa, T. Adschiri, Hydrothermal technology for nanotechnology, Progress in Crystal Growth and Characterization of Materials, 53, 117 (2007)
    [17] R. Yoshida, Y. Suzuki, S. Yoshikawa, Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments, Journal of Solid State Chemistry, 178, 2179 (2005)
    [18] K. Prasad, D.V. Pinjari, A.B. Pandit, S.T. Mhaske, Phase transformation of nanostructured titanium dioxide from anatase-to-rutile via combined ultrasound assisted sol–gel technique, Ultrasonics Sonochemistry, 17, 409 (2010)
    [19] B. O, Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films, Nature. 353, 737 (1991)
    [20]M. K. Nazeeruddin,A. kay, I. Radicio, R. Humphry-Baker, E. Müller, P. liska, N. Vlachopoulos, M. Grätzel, J.Am. Chem. Soc. 115, 6382 (1993)
    [21]C. J. Barbē, F. Arendse,P.Comte, M. Jirousek, F. Lenzmann, V.Shklover, M. Grätzel, J. Am. Chem. Soc, 80, 3157 (1997)

    [22] A. Hagfeldt, M. Grätzel, Light-Induced Redox Reactions in Nanocrystalline Systems, Chem. Rev. 95, 49 (1995)
    [23]E. M. J. Johansson, M. Hedlund, H. Siegbahn, H. Rensmo, A Photoelectron Spectroscopy Study, J. Phys. Chem. B.109, 22256 (2005)
    [24]H. Rensmo, K. Westermark, S. Sodergren, O. Kohle, P. Persson, S. Lunell, H. Siegbahn, XPS studies of Ru-polypyridine complexes for solar cell applications, J. Chem. Phys.111, 2744 (1999)
    [25] B. O'Regan, M. Grätzel, A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films, Nature 353, 737-739 (1991).
    [26] M. Grätze, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A 164:3–14 Hagfeldt A (2004)
    [27] P. Wang, S. M. Zadeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, M. Grätzel, Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals, J. Phys. Chem. B. 107 14336 (2003)
    [28]B. R. Speer, Photosynthetic Pigments in UCMP Glossary (online). University of California, Berkeley Museum of Paleontology (2007).

    [29] Y. H. Su, W. H. Lai, L. G. Teoh, M. H. Hon, J. L. Huang, Layer-by-layer Au Nanoparticles as a Schottky Barrier in Water-based Dye-sensitized Solar Cell, Appl. Phys. A: Mater. Sci. & Proc. 88, 173 (2007).
    [30] N. Papageorgiou, W. F. Maier, M. Grätzel, An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media, J. Electrochem. Soc. 144, 876 (1997)
    [31] T. Hoshikawa, M. Yamada, R. Kikuchi, K. Eguchi, Impedance analysis for dye-sensitized solar cells with a three-electrode system, J. ElectroanalChem. 577, 339 (2005)
    [32] X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, E. Abe, Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells, Thin Solid Film. 472, 242 (2005)
    [33] T. Hoshikawa, M. Yamada, R. Kikuchi, K. Eguchi, Impedance Analysis of Internal Resistance Affecting the Photoelectrochemical Performance of Dye-Sensitized Solar Cells, J. Electrochem. Soc. 152, E68 (2005)
    [34]T. C. Wei, C. C. Wan, Y. Y. Wang, Poly(N-vinyl-2-pyrrolidone)- capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells, J. appl, Phys. Lett. 88, 103122 (2006)

    [35] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E. Abe, Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell, J. Electroanal Chem. 570, 257 (2004)
    [36]F. Pichot, B. A. Gregg, The Photovoltage-Determining Mechanism in Dye-Sensitized Solar Cells, J. Phys. Chem. B. 104, 6 (2000)
    [37] R. Eichberger, F. Willig, Ultrafast electron injection from excited dye molecules into semiconductor electrodes, Chem. Phys. 141, 159 (1990)
    [38]M. K. Nazeeruddin, P.Pechy, T .Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, LeCevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc, 123, 1613 (2001)
    [39] K. Westermark, H. Rensmo, H. Siegbahn, K. Keis, A. Hagfeldt, L. Ojamae, P . Persson, PES studies of Ru(dcbpyH2)2(NCS)2 adsorption on nanostructured ZnO for solar cell applications, J. Phys Chem. B.106 , 10102 (2002)
    [40] S. Perera, E. G. Gillan, A facile solvothermal route to photocatalytically active nanocrystalline anatase TiO2 from peroxide precursors, Solid State Sciences, 10, 864 (2008)
    [41] X. Shen, B. Tian, Microemulsion-mediated solvothermal synthesis and photocatalytic properties of crystalline titania with controllable phases of anatase and rutile, Journal of Hazardous Materials, 192, 651 (2011)
    [42] 羅啟仁, 銳鈦礦高能球磨之相變態研究, 國立東華大學材料科學與工程學研究所碩士論文, 33 (2009)
    [43] 彭懷夫, 以濕式化學法製備TiO2晶相、形貌與其成長性質之研究,國立東華大學化學研究所碩論文, 34 (2004)
    [44] 楊筱筠, 利用斜角度沉積法製備二氧化鈦薄膜於染料敏化太陽能電池之運用, 國立東華大學電子工程研究所碩論文, 123 (2008)
    [45] 蔡宜親, 二氧化鈦奈米顯微結構對染料敏化太陽能電池效率影響之研究, 國立東華大學材料科學與工程學研究所碩士論文, 116 (2007)
    [46] 王順輝, 濺鍍製備硼與碳摻雜二氧化鈦薄膜的可見光光觸媒之研究, 國立東華大學材料科學與工程學研究所碩士論文, 100 (2005)
    [47] S.-Di Mo, W. Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite, Physical Review B, 51, 13023 (1995)

    [48] G. Pfaff, P. Reynders, Angle-Dependent Optical Effects Deriving from Submicron Structures of Films and Pigments, Chemical Reviews, 99, 1963 (1999)
    [49]A. D'Orazio, Design of Er3+ doped SiO2 TiO2 planar waveguide amplifier, Journal of Non-Crystalline Solids, 322, 278 (2003)
    [50]張青紅, 高濂, 郭景坤, 無機材料學報. 15: 929 (2000)
    [51]B. K. Vainshtein, W. M. Fridkin, V. L. Indenbom, Structure of Crystals. Berlin: Macmil-lan India Ltd, 1994.
    [52] S. Kambe, S. Nakade, Y. Wada, T. Kitamura, S. Yanagida, Effects of crystal structure, size, shape and surface structural differences on photo-induced electron transport in TiO2 mesoporous electrodes, J. Mater. Chem. 12, 723 (2002)
    [53] N. -G. Park, J. Van de Lagemaat, A. J. Frank, Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells, J. Phys. Chem. B. 104, 8989 (2000)
    [54] P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, M. Grätzel, A High Molar Extinction Coefficient Sensitizer for Stable Dye-Sensitized Solar Cells, J. Am. Chem. Soc.127, 808 (2005)
    [55]R. E. Krebs, The History and Use of Our Earth's Chemical Elements: A Reference Guide (2nd edition). (2006). Westport, CT: Greenwood Press. ISBN 0313334382.

    [56] K. Kalyanasundaram, M. Grätzel, Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coord. Chem. Rev. 177, 347 (1998)
    [57] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Gratzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc. (115), 6382 (1993)
    [58]Michael Grätzel, Brian O'Regan. A low-cost, high-efficiency solar cell based ondye-sensitized colloidal TiO2 films, Nature 353 (24): 737 (24 October 1991).
    [59]Greg P. Smestad and Michael Grätzel, Demonstrating Electron Transfer and Nanotechnology: A Natural Dye–Sensitized Nanocrystalline Energy Converter, J. Chemical Education, 75(6),June 1998. Web site: JChemEd.chem.wisc.edu.
    [60] M. Grätze, Review: Dye-sensitized solar cells, J. Photochemistry and Photobiology C:Photochemistry Reviews 4, 145 (2003)
    [61]W. D. Wang and S. Y. Xu. Degradation kinetics of anthocyanins in blackberry juice and concentrate, Journal of Food Engineering, 82, 271 ( 2007)
    [62]G. J. McDougall, S. Fyffe, P. Dobson and D Stewart. Anthocyanins from red cabbage – stability to simulated gastrointestinal digestion, Phytochemistry, 68, 1285 (2007)
    [63]F. L. Silva, M. T. Escribano-Bailon, J. J. Perez Alonso, J. C. Rivas-Gonzalo and C. Santos-Buelga. Anthocyanin pigments in strawberry, Food Science and Technology, 40, 374 (2007)
    [64]F. Wellmann, M. Griesser, W. Schwab, S. Martens, W. Eisenreich, U. Matern and R. Lukačin. Anthocyanidin synthase from Gerbera hybrida catalyzes the conversion of (+)-catechin to cyanidin and a novel procyanidin Anthocyanidin synthase from Gerbera hybrida catalyzes the conversion of (+)-catechin to cyanidin and a novel procyanidin, FEBS Letters, 580, 1642 (2006)
    [65] H. Wang, E. J. Race, A. J. Shrikhande, Characterization of Anthocyanins in Grape Juices by Ion Trap Liquid Chromatography−Mass Spectrometry, J. Agric., Food Chem, 51, 1839 (2003)
    [66]N. Saito, K. Toki, Y. Morita, A. Hoshino, S. Iida, A. Shigihara and T. Honda, Acylated peonidin glycosides from duskish mutant flowers of Ipomoea nil, Phytochemistry, 66, 1852 (2005)
    [67]S. Kallithraka, A. Abdel-Azeem Mohdaly, D. P. Makris and P. Kefalas, Determination of major anthocyanin pigments in Hellenic native grape varieties (Vitis vinifera sp.): association with antiradical activity, Journal of Food Composition and Analysis, 18, 375-386 (2005)

    [68]C. Mantell, M. Rodriguez and E. M. de la Ossa, Measurement of the diffusion coefficient of a model food dye (malvidin 3,5-diglucoside) in a high pressure CO2+methanol system by the chromatographic peak-broadening technique, The Journal of Supercritical Fluids, 25, 57 (2003)
    [69]S. Hao, J. Wu, Y. Huang, J. Lin, 應用葡萄汁染料敏化 TiO2 太陽能電池之研究 Solar Energy, 80, 209 (2006)
    [70]K. Wongcharee, V. Meeyoo, S. Chavadej, Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers, Solar Energy Materials & Solar Cells, 91, 566 (2007)

    下載圖示 校內:2023-12-30公開
    校外:2023-12-30公開
    QR CODE