簡易檢索 / 詳目顯示

研究生: 郭冠霆
Kuo, Kuan-Ting
論文名稱: 奈米壓印微影製備圖案化且具疏水性與黏附性的銀奈米粒子修飾之週期性ZnO奈米草以提升SERS性能
Hydrophobic and Sticky Silver Nanoparticles Decorated Periodic ZnO Nanograss Patterned by Nanoimprint Lithography for Enhanced SERS Performance
指導教授: 林俊宏
Lin, Chun-Hung
共同指導教授: 張雯惠
Chang, Wen-Huei
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 111
中文關鍵詞: 氧化鋅奈米草奈米壓印微影技術選擇性生長黏性疏水基板表面增強拉曼散射孔雀石綠
外文關鍵詞: ZnO Nanograss, Nanoimprint Lithography, Selective Growth, Sticky Hydrophobic Substrate, Surface Enhanced Raman Scattering, Malachite green
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究結合奈米壓印微影技術(Nanoimprint Lithography, NIL)與水熱法生長具有週期性圖案氧化鋅奈米草(ZnO Nanograss)基板並使用銀奈米粒子(AgNPs)進行修飾成功開發一種高靈敏度並具有長期穩定性的表面增強拉曼散射(Surface Enhance Raman Scattering, SERS)基板。
    探討ZnO Nanograss基板的疏水性和黏性對SERS性能的影響,ZnO Nanograss基板經過黑暗儲存3個月後再使用AgNPs的修飾接觸角可以增加到144.6°,而ZnO Nanograss基板變高度疏水性後仍保有良好的黏性,10 µL的水滴在基板旋轉90°和180°後還能夠黏住水滴,基板特有的疏水性和黏性有助於將檢測分子吸附和聚集,並進一步提升拉曼訊號強度。利用NIL技術搭配水熱法實現ZnO Nanograss在限定區域內的選擇性生長並設計不同週期性圖案比較SERS基板靈敏度,最後透過優化控制生長的光柵週期達到最佳SERS強度的光柵圖案ZnO Nanograss基板,圖案設計結果顯示使用週期1200 nm線寬600 nm的光柵結構能達到最佳SERS增強效果,其中也調控沉積不同厚度的銀膜以達到最好的增強局域表面電漿共振(Localized Surface Plasmon Resonance, LSPR)效應。基板經SEM、EDS、XRD和XPS進行形貌與材料組成分析,證實其結構與性能的穩定。基板的SERS性能使用孔雀石綠(Malachite green, MG)作為檢測分子進行測試,基板的MG檢測濃度最低可達10-14 M,並且在1615 cm-1的特徵峰R2值為0.993的良好線性關係,且AgNPs修飾後的基板在存放一個月後仍能維持穩定且幾乎不變的拉曼訊號強度,證明其具備優異的靈敏度與穩定性。
    這項研究開發了一種具備高靈敏度和長期穩定性的SERS平台,對於環境與生化污染物的即時偵測應用展現高度潛力。

    This study presents a fabrication process that combines nanoimprint lithography (NIL) with hydrothermal growth to produce zinc oxide nanograss (ZnO Nanograss), successfully creating a highly efficient surface-enhanced Raman scattering (SERS) substrate by decorating the ZnO Nanograss with silver nanoparticles (AgNPs). Periodic patterns, such as one-dimensional gratings and two-dimensional dot or hole arrays, were defined via NIL, enabling the selective growth of ZnO Nanograss in designated areas and forming well-aligned, uniform periodic ZnO Nanograss structures. Subsequent deposition of a 30 nm-thick AgNPs layer significantly enhanced localized surface plasmon resonance (LSPR) effects and SERS performance.
    The study found that the surface wettability of the ZnO Nanograss substrate improved markedly with increased dark storage time, transitioning from initial hydrophobicity (contact angle of 93.7°) to a highly hydrophobic state (contact angle of 144.6°) after three months of dark storage. Notably, even after becoming highly hydrophobic, the ZnO Nanograss substrate retained a sticky characteristic: a 10 μL water droplet remained pinned to the surface even when rotated at 90° and 180°. This sticky hydrophobicity effectively promoted the adsorption and aggregation of analyte molecules, enhancing their local concentration and consequently amplifying the Raman signal.
    Experimental results demonstrated that the ZnO Nanograss substrate with a grating structure of 1200 nm period and 600 nm line width, combined with 30 nm AgNPs deposition, achieved the best SERS enhancement. Using malachite green (MG) as the probe molecule, the substrate successfully detected concentrations as low as 10-14 M, and exhibited an excellent linear relationship at the 1615 cm-1 characteristic peak (R2 = 0.993).
    Furthermore, the substrate maintained stable Raman signal intensity even after one month of storage at room temperature, confirming its outstanding long-term stability and reproducibility, and demonstrating great practical value.

    摘要 I EXTENDED ABSTRACT III 致謝 XIII 目錄 XIV 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1.1前言與研究動機 1 1.2論文架構 5 第二章 理論原理與文獻回顧 6 2.1水熱合成法之ZnO奈米草生長機制 6 2.2 ZnO表面潤濕性變化機制 7 2.3疏水表面基本原理搭配咖啡環效應對於SERS的應用 9 2.4表面增強拉曼散射(SERS)之理論基礎 11 2.5 ZnO與貴金屬異質結構之能帶對齊與電荷轉移效應 13 2.6傳統ZnO奈米結構在SERS基板的應用 14 2.7 ZnO圖案化在SERS的增益和應用 15 第三章 研究方法 26 3.1藥品配置與矽母模製作 26 3.1.1藥品配置 26 3.1.2矽母模具製作 29 3.1.3矽母模具預處理 30 3.1.4奈米壓印模具之全氟聚醚軟(PFPE)製作 32 3.2銀奈米粒子修飾週期性ZnO奈米草基板製作 34 3.3基板SERS量測 36 3.3.1 MG分子檢測 37 3.4基板特性分析量測儀器 37 第四章 實驗結果與討論 40 4.1奈米壓印圖案化ZnO Nanograss基板形貌分析 40 4.2銀奈米粒子修飾之ZnO Nanograss基板元素分析 41 4.2.1基板SEM形貌與AgNPs分佈 41 4.2.1基板EDS元素分佈分析 42 4.2.2基板XRD結晶結構分析 43 4.2.3基板XPS表面化學鍵結狀態分析 44 4.3 ZnO基板疏水性變化對SERS性能的影響 46 4.4蒸鍍銀膜厚度對SERS性能的最佳化 48 4.5不同基板設計對SERS效能的比較 48 4.6不同圖案相同週期基板SERS強度比較 50 4.7不同週期之光柵圖案基板SERS強度比較 51 4.8基板穩定性與均勻性分析 53 4.9基板靈敏度與最低偵測極限(LOD)分析 54 4.10基板之真實樣本分析-河水 55 4.11基板之長期穩定性分析 56 第五章 結論與展望 71 5.1結論 71 5.2未來展望 72 參考文獻 74

    1. A. A. Mosquera, D. Horwat, A. Rashkovskiy, A. Kovalev, P. Miska, D. Wainstein, J. M. Albella, and J. L. Endrino, "Exciton and core-level electron confinement effects in transparent ZnO thin films," Scientific Reports 3, 1714 (2013).
    2. W. Ouyang, J. Chen, Z. Shi, and X. Fang, "Self-powered UV photodetectors based on ZnO nanomaterials," Applied Physics Reviews 8 (2021).
    3. K. Liu, M. Sakurai, and M. Aono, "ZnO-Based Ultraviolet Photodetectors," Sensors 10, 8604-8634 (2010).
    4. H. Frankenstein, C. Z. Leng, M. D. Losego, and G. L. Frey, "Atomic layer deposition of ZnO electron transporting layers directly onto the active layer of organic solar cells," Organic Electronics 64, 37-46 (2019).
    5. Q. An, P. Fassl, Y. J. Hofstetter, D. Becker-Koch, A. Bausch, P. E. Hopkinson, and Y. Vaynzof, "High performance planar perovskite solar cells by ZnO electron transport layer engineering," Nano Energy 39, 400-408 (2017).
    6. Y. Liu, Y. Li, and H. Zeng, "ZnO-Based Transparent Conductive Thin Films: Doping, Performance, and Processing," Journal of Nanomaterials 2013, 196521 (2013).
    7. N. Yamamoto, H. Makino, S. Osone, A. Ujihara, T. Ito, H. Hokari, T. Maruyama, and T. Yamamoto, "Development of Ga-doped ZnO transparent electrodes for liquid crystal display panels," Thin Solid Films 520, 4131-4138 (2012).
    8. S. J. Pearton, and F. Ren, "Advances in ZnO-based materials for light emitting diodes," Current Opinion in Chemical Engineering 3, 51-55 (2014).
    9. D. Vanmaekelbergh, and L. K. van Vugt, "ZnO nanowire lasers," Nanoscale 3, 2783-2800 (2011).
    10. C.-N. Wang, Y.-L. Li, F.-L. Gong, Y.-H. Zhang, S.-M. Fang, and H.-L. Zhang, "Advances in Doped ZnO Nanostructures for Gas Sensor," The Chemical Record 20, 1553-1567 (2020).
    11. A. Tereshchenko, M. Bechelany, R. Viter, V. Khranovskyy, V. Smyntyna, N. Starodub, and R. Yakimova, "Optical biosensors based on ZnO nanostructures: advantages and perspectives. A review," Sensors and Actuators B: Chemical 229, 664-677 (2016).
    12. H. Gullapalli, V. S. M. Vemuru, A. Kumar, A. Botello-Mendez, R. Vajtai, M. Terrones, S. Nagarajaiah, and P. M. Ajayan, "Flexible Piezoelectric ZnO–Paper Nanocomposite Strain Sensor," Small 6, 1641-1646 (2010).
    13. M. Guo, P. Diao, and S. Cai, "Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions," Journal of Solid State Chemistry 178, 1864-1873 (2005).
    14. R. Mardosaitė, A. Jurkevičiu̅tė, and S. Račkauskas, "Superhydrophobic ZnO Nanowires: Wettability Mechanisms and Functional Applications," Crystal Growth & Design 21, 4765-4779 (2021).
    15. A. Katiyar, N. Kumar, R. K. Shukla, and A. Srivastava, "Substrate free ultrasonic-assisted hydrothermal growth of ZnO nanoflowers at low temperature," SN Applied Sciences 2, 1386 (2020).
    16. Y. Jiao, Y. Pan, M. Yang, Z. Li, J. Yu, R. Fu, B. Man, C. Zhang, and X. Zhao, "Micro-nano hierarchical urchin-like ZnO/Ag hollow sphere for SERS detection and photodegradation of antibiotics," Nanophotonics 13, 307-318 (2024).
    17. P. Carvalho, P. Sampaio, S. Azevedo, C. Vaz, J. P. Espinós, V. Teixeira, and J. O. Carneiro, "Influence of thickness and coatings morphology in the antimicrobial performance of zinc oxide coatings," Applied Surface Science 307, 548-557 (2014).
    18. Q. I. Rahman, M. Ahmad, S. K. Misra, and M. Lohani, "Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles," Materials Letters 91, 170-174 (2013).
    19. F. M. Sanakousar, C. C. Vidyasagar, V. M. Jiménez-Pérez, and K. Prakash, "Recent progress on visible-light-driven metal and non-metal doped ZnO nanostructures for photocatalytic degradation of organic pollutants," Materials Science in Semiconductor Processing 140, 106390 (2022).
    20. M. Le Pivert, B. Zerelli, N. Martin, M. Capochichi-Gnambodoe, and Y. Leprince-Wang, "Smart ZnO decorated optimized engineering materials for water purification under natural sunlight," Construction and Building Materials 257, 119592 (2020).
    21. M. Le Pivert, O. Kerivel, B. Zerelli, and Y. Leprince-Wang, "ZnO nanostructures based innovative photocatalytic road for air purification," Journal of Cleaner Production 318, 128447 (2021).
    22. A. Pérez-Larios, R. Lopez, A. Hernández-Gordillo, F. Tzompantzi, R. Gómez, and L. M. Torres-Guerra, "Improved hydrogen production from water splitting using TiO2–ZnO mixed oxides photocatalysts," Fuel 100, 139-143 (2012).
    23. M.-H. Li, J.-J. Chen, Y.-S. Chen, S.-T. Lin, B.-H. Lin, M.-Y. Kuo, C.-H. Lin, H. Chen, and J. Han, "Development of a broadband photodetector utilizing ZnO nanorods with grating structure fabricated via nanoimprint lithography," Sensors and Actuators A: Physical 375, 115530 (2024).
    24. J. Cui, D. Wang, T. Xie, and Y. Lin, "Study on photoelectric gas-sensing property and photogenerated carrier behavior of Ag–ZnO at the room temperature," Sensors and Actuators B: Chemical 186, 165-171 (2013).
    25. X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, and R. Liu, "Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods," Scientific Reports 4, 4596 (2014).
    26. C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu, Y. lv, T. Guo, Y. Zhao, and C. Zhu, "Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance," Journal of Hazardous Materials 182, 123-129 (2010).
    27. S. Kumar Vemuri, S. Mukhopadhyay, A. Ray, and I. Mukhopadhyay, "3D SERS substrate using silver nanoparticles decorated ZnO nanorods on silicon micropyramids hybrid heterostructure," Applied Surface Science 675, 160993 (2024).
    28. X. G. Chen, L. Zhu, Z. P. Ma, M. L. Wang, R. Zhao, Y. Y. Zou, and Y. J. Fan, "Ag Nanoparticles Decorated ZnO Nanorods as Multifunctional SERS Substrates for Ultrasensitive Detection and Catalytic Degradation of Rhodamine B," Nanomaterials 12, 13 (2022).
    29. S. Picciolini, N. Castagnetti, R. Vanna, D. Mehn, M. Bedoni, F. Gramatica, M. Villani, D. Calestani, M. Pavesi, L. Lazzarini, A. Zappettini, and C. Morasso, "Branched gold nanoparticles on ZnO 3D architecture as biomedical SERS sensors," Rsc Advances 5, 93644-93651 (2015).
    30. Z. Li, K. Zhu, Q. Zhao, and A. Meng, "The enhanced SERS effect of Ag/ZnO nanoparticles through surface hydrophobic modification," Applied Surface Science 377, 23-29 (2016).
    31. N. H. T. Tran, T. T. T. Van, H. Van Le, H. K. T. Ta, and D. Van Hoang, "Study of Ag NPs decorated - ZnO nanoflowers for the SERS - Based detection of pesticides: An experimental approach," Materials Chemistry and Physics 337 (2025).
    32. D. T. Tieu, T. N. Quynh Trang, L. V. Tuan Hung, and V. T. Hanh Thu, "Assembly engineering of Ag@ZnO hierarchical nanorod arrays as a pathway for highly reproducible surface-enhanced Raman spectroscopy applications," Journal of Alloys and Compounds 808, 151735 (2019).
    33. T. Dong, Y. Wu, and M. Mei, "Hierarchically porous coralloid ZnO@Ag microspheres as SERS substrate for highly sensitive malachite green detection," Optical Materials 152, 115405 (2024).
    34. T. T. Tran, X. H. Vu, T. L. Ngo, T. T. H. Pham, D. D. Nguyen, and V. D. Nguyen, "Enhanced Raman scattering based on a ZnO/Ag nanostructured substrate: an in-depth study of the SERS mechanism," Physical Chemistry Chemical Physics 25, 15941-15952 (2023).
    35. G. Su, L. Dang, G. Liu, T. Feng, W. Wang, C. Wang, and H. Wei, "MOF-Derived hierarchical porous 3D ZnO/Ag nanostructure as a reproducible SERS substrate for ultrasensitive detection of multiple environmental pollutants," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 270, 120818 (2022).
    36. S. Columbus, A. Hamdi, K. Ramachandran, K. Daoudi, E. H. Dogheche, and M. Gaidi, "Rapid and ultralow level SERS detection of ethylparaben using silver nanoprisms functionalized sea urchin-like Zinc oxide nanorod arrays for food safety analysis," Sensors and Actuators A: Physical 347, 113962 (2022).
    37. N. R. Barveen, T.-J. Wang, Y.-H. Chang, and Z. Yuan-Liu, "Ultrasensitive and reusable SERS probe for the detection of synthetic dyes in food industry through hybrid flower-shaped ZnO@Ag nanostructures," Journal of Alloys and Compounds 861, 157952 (2021).
    38. T. T. Ha Pham, X. H. Vu, N. D. Dien, T. T. Trang, T. T. Kim Chi, P. H. Phuong, and N. T. Nghia, "Ag nanoparticles on ZnO nanoplates as a hybrid SERS-active substrate for trace detection of methylene blue," Rsc Advances 12, 7850-7863 (2022).
    39. A. Zhu, S. Ali, Z. Wang, Y. Xu, R. Lin, T. Jiao, Q. Ouyang, and Q. Chen, "ZnO@Ag-Functionalized Paper-Based Microarray Chip for SERS Detection of Bacteria and Antibacterial and Photocatalytic Inactivation," Analytical Chemistry 95, 18415-18425 (2023).
    40. H. Wu, J. Wang, Q. Yang, S. Qin, Z. Li, Y. Zhang, J. Pan, and C. Li, "Ultrasensitive and stable SERS detection by defect engineering constructed Ag@Ga-doped ZnO core-shell nanoparticles," Applied Surface Science 621 (2023).
    41. Z. Zhu, K. Han, Y. Feng, Z. Li, A. Zhang, T. Wang, M. Zhang, and W. Zhang, "Biomimetic Ag/ZnO@PDMS Hybrid Nanorod Array-Mediated Photo-induced Enhanced Raman Spectroscopy Sensor for Quantitative and Visualized Analysis of Microplastics," ACS Appl Mater Interfaces 15, 36988-36998 (2023).
    42. J. Wang, Y. Hu, X. Yu, X. Zhuang, Q. Wang, N. Jiang, and J. Hu, "Recyclable and ultrasensitive SERS sensing platform: Deposition of atomically precise Ag152 nanoclusters on surface of plasmonic 3D ZnO-NC/AuNP arrays," Applied Surface Science 540 (2021).
    43. C.-H. Hsu, L.-C. Hsu, C.-H. Chen, L.-Y. Chen, and C.-S. Lai, "Investigation of SERS Studies on Periodic Patterned ZnO Nanorod Array Fabricated Using Silica Inverse Opal Nanostructure as a Template," The Journal of Physical Chemistry C 128, 8288-8295 (2024).
    44. X. Fan, H. Zhang, S. Liu, X. Hu, and K. Jia, "NIL—a low-cost and high-throughput MEMS fabrication method compatible with IC manufacturing technology," Microelectronics Journal 37, 121-126 (2006).
    45. W. Zhou, "Application of NIL in Solar Cell," in Nanoimprint Lithography: An Enabling Process for Nanofabrication(Springer Berlin Heidelberg, 2013), pp. 217-249.
    46. W.-H. Chang, Y.-C. Wu, J. Shieh, K.-T. Kuo, C.-C. Huang, H.-L. Cheng, and C.-H. Lin, "Nanoimprinted Sticky Hydrophobic SU-8 Nanopillars for Ultra-Sensitive Surface-Enhanced Raman Spectroscopy Applications," ACS Applied Nano Materials 8, 10087-10095 (2025).
    47. T.-W. Yeh, Y.-H. Hung, C.-S. Chung, S.-J. Yeh, H.-Y. Lee, and C.-H. Lin, "Nanotransfer Printed Dual-Layer Metasurfaces for Infrared Cut-off Applications," ACS Applied Nano Materials 7, 25593-25602 (2024).
    48. H. Liu, L. Feng, J. Zhai, L. Jiang, and D. Zhu, "Reversible Wettability of a Chemical Vapor Deposition Prepared ZnO Film between Superhydrophobicity and Superhydrophilicity," Langmuir 20, 5659-5661 (2004).
    49. C. Ni, J. Zhao, X. Xia, Z. Wang, X. Zhao, J. Yang, N. Zhang, Y. Yang, H. Zhang, and D. Gao, "Constructing a Ring-like Self-Aggregation SERS Sensor with the Coffee Ring Effect for Ultrasensitive Detection and Photocatalytic Degradation of the Herbicides Paraquat and Diquat," Journal of Agricultural and Food Chemistry 70, 15296-15310 (2022).
    50. V. Gerbreders, M. Krasovska, E. Sledevskis, A. Gerbreders, I. Mihailova, E. Tamanis, and A. Ogurcovs, "Hydrothermal synthesis of ZnO nanostructures with controllable morphology change," CrystEngComm 22, 1346-1358 (2020).
    51. S.-W. Chen, and J.-M. Wu, "Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method," Acta Materialia 59, 841-847 (2011).
    52. D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, and A. Schulte, "Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method," Physica B: Condensed Matter 403, 3713-3717 (2008).
    53. G. S. Kim, S. G. Ansari, H. K. Seo, Y. S. Kim, and H. S. Shin, "Growth and morphological study of zinc oxide nanoneedles grown on the annealed titanate nanotubes using hydrothermal method," Journal of Applied Physics 102 (2007).
    54. T. Demes, C. Ternon, F. Morisot, D. Riassetto, M. Legallais, H. Roussel, and M. Langlet, "Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires," Applied Surface Science 410, 423-431 (2017).
    55. J.-H. Tian, J. Hu, S.-S. Li, F. Zhang, J. Liu, J. Shi, X. Li, Z.-Q. Tian, and Y. Chen, "Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires," Nanotechnology 22, 245601 (2011).
    56. K. Sahu, and A. K. Kar, "Morphological, optical, photocatalytic and electrochemical properties of hydrothermally grown ZnO nanoflowers with variation in hydrothermal temperature," Materials Science in Semiconductor Processing 104, 104648 (2019).
    57. C.-L. Kuo, T.-J. Kuo, and M. H. Huang, "Hydrothermal Synthesis of ZnO Microspheres and Hexagonal Microrods with Sheetlike and Platelike Nanostructures," The Journal of Physical Chemistry B 109, 20115-20121 (2005).
    58. Y. Bao, C. Feng, C. Wang, and J. Ma, "One-step hydrothermal synthesis of hollow ZnO microspheres with enhanced performance for polyacrylate," Progress in Organic Coatings 112, 270-277 (2017).
    59. C. Yan, C. M. Raghavan, C. Ji, R. Sun, and C.-P. Wong, "Enhanced ultraviolet emission from hydrothermally grown ZnO nano-grass on Si substrate," Journal of Electronic Materials 48, 1540-1544 (2019).
    60. Y. Tao, M. Fu, A. Zhao, D. He, and Y. Wang, "The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method," Journal of Alloys and Compounds 489, 99-102 (2010).
    61. E. Velayi, and R. Norouzbeigi, "Synthesis of hierarchical superhydrophobic zinc oxide nano-structures for oil/water separation," Ceramics International 44, 14202-14208 (2018).
    62. K. Yadav, B. R. Mehta, S. Bhattacharya, and J. P. Singh, "A fast and effective approach for reversible wetting-dewetting transitions on ZnO nanowires," Scientific Reports 6, 35073 (2016).
    63. V. Khranovskyy, T. Ekblad, R. Yakimova, and L. Hultman, "Surface morphology effects on the light-controlled wettability of ZnO nanostructures," Applied Surface Science 258, 8146-8152 (2012).
    64. H. B. Lee, R. T. Ginting, S. T. Tan, C. H. Tan, A. Alshanableh, H. F. Oleiwi, C. C. Yap, M. H. H. Jumali, and M. Yahaya, "Controlled Defects of Fluorine-incorporated ZnO Nanorods for Photovoltaic Enhancement," Scientific Reports 6, 32645 (2016).
    65. E. Polydorou, A. Zeniou, D. Tsikritzis, A. Soultati, I. Sakellis, S. Gardelis, T. A. Papadopoulos, J. Briscoe, L. C. Palilis, S. Kennou, E. Gogolides, P. Argitis, D. Davazoglou, and M. Vasilopoulou, "Surface passivation effect by fluorine plasma treatment on ZnO for efficiency and lifetime improvement of inverted polymer solar cells," Journal of Materials Chemistry A 4, 11844-11858 (2016).
    66. T. Pan, J. Liu, N. Deng, Z. Li, L. Wang, Z. Xia, J. Fan, and Y. Liu, "ZnO Nanowires@PVDF nanofiber membrane with superhydrophobicity for enhanced anti-wetting and anti-scaling properties in membrane distillation," Journal of Membrane Science 621, 118877 (2021).
    67. M. Wang, W. Yu, Y. Zhang, J.-Y. Woo, Y. Chen, B. Wang, Y. Yun, G. Liu, J. K. Lee, and L. Wang, "A novel flexible micro-ratchet/ZnO nano-rods surface with rapid recovery icephobic performance," Journal of Industrial and Engineering Chemistry 62, 52-57 (2018).
    68. F. Xu, Y. Zhang, Y. Sun, Y. Shi, Z. Wen, and Z. Li, "Silver Nanoparticles Coated Zinc Oxide Nanorods Array as Superhydrophobic Substrate for the Amplified SERS Effect," The Journal of Physical Chemistry C 115, 9977-9983 (2011).
    69. N. D. Jayram, S. Sonia, S. Poongodi, P. S. Kumar, Y. Masuda, D. Mangalaraj, N. Ponpandian, and C. Viswanathan, "Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates," Applied Surface Science 355, 969-977 (2015).
    70. X. Zhou, G. Wang, M. Wang, Y. Zhang, W. Yin, and Q. He, "A simple preparation method for superhydrophobic surface on silicon rubber and its properties," Progress in Organic Coatings 143, 105612 (2020).
    71. Y. Yuan, Y. Duan, Z. Zuo, L. Yang, and R. Liao, "Novel, stable and durable superhydrophobic film on glass prepared by RF magnetron sputtering," Materials Letters 199, 97-100 (2017).
    72. M. E. Fragalà, A. Di Mauro, D. A. Cristaldi, M. Cantarella, G. Impellizzeri, and V. Privitera, "ZnO nanorods grown on ultrathin ZnO seed layers: Application in water treatment," Journal of Photochemistry and Photobiology A: Chemistry 332, 497-504 (2017).
    73. S. Das, S. S. Meena, and A. Pramanik, "Zinc oxide functionalized human hair: A potential water decontaminating agent," Journal of Colloid and Interface Science 462, 307-314 (2016).
    74. X. Gao, G. Wen, and Z. Guo, "Durable superhydrophobic and underwater superoleophobic cotton fabrics growing zinc oxide nanoarrays for application in separation of heavy/light oil and water mixtures as need," Colloids and Surfaces A: Physicochemical and Engineering Aspects 559, 115-126 (2018).
    75. P. Raturi, K. Yadav, and J. P. Singh, "ZnO-Nanowires-Coated Smart Surface Mesh with Reversible Wettability for Efficient On-Demand Oil/Water Separation," Acs Applied Materials & Interfaces 9, 6007-6013 (2017).
    76. Z. Zuo, R. Liao, X. Zhao, X. Song, Z. Qiao, C. Guo, A. Zhuang, and Y. Yuan, "Anti-frosting performance of superhydrophobic surface with ZnO nanorods," Applied Thermal Engineering 110, 39-48 (2017).
    77. R. Liao, C. Li, Y. Yuan, Y. Duan, and A. Zhuang, "Anti-icing performance of ZnO/SiO2/PTFE sandwich-nanostructure superhydrophobic film on glass prepared via RF magnetron sputtering," Materials Letters 206, 109-112 (2017).
    78. W. Zhang, S. Wang, Z. Xiao, X. Yu, C. Liang, and Y. Zhang, "Frosting Behavior of Superhydrophobic Nanoarrays under Ultralow Temperature," Langmuir 33, 8891-8898 (2017).
    79. V. Pandiyarasan, S. Suhasini, J. Archana, M. Navaneethan, A. Majumdar, Y. Hayakawa, and H. Ikeda, "Fabrication of hierarchical ZnO nanostructures on cotton fabric for wearable device applications," Applied Surface Science 418, 352-361 (2017).
    80. S. Vallejos, I. Gràcia, N. Pizúrová, E. Figueras, J. Čechal, J. Hubálek, and C. Cané, "Gas sensitive ZnO structures with reduced humidity-interference," Sensors and Actuators B: Chemical 301, 127054 (2019).
    81. Y. Si, and Z. Guo, "Superhydrophobic nanocoatings: from materials to fabrications and to applications," Nanoscale 7, 5922-5946 (2015).
    82. M. Yang, D. Chen, J. Hu, X. Zheng, Z.-J. Lin, and H. Zhu, "The application of coffee-ring effect in analytical chemistry," TrAC Trends in Analytical Chemistry 157, 116752 (2022).
    83. D. Mampallil, and H. B. Eral, "A review on suppression and utilization of the coffee-ring effect," Advances in Colloid and Interface Science 252, 38-54 (2018).
    84. W. Wang, Y. Yin, Z. Tan, and J. Liu, "Coffee-ring effect-based simultaneous SERS substrate fabrication and analyte enrichment for trace analysis," Nanoscale 6, 9588-9593 (2014).
    85. P. Šimáková, E. Kočišová, and M. Procházka, "“Coffee Ring” Effect of Ag Colloidal Nanoparticles Dried on Glass: Impact to Surface-Enhanced Raman Scattering (SERS)," Journal of Nanomaterials 2021, 4009352 (2021).
    86. A. Kudelski, "Analytical applications of Raman spectroscopy," Talanta 76, 1-8 (2008).
    87. C. Handapangoda, S. Nahavandi, and M. Premaratne, "Review of Nanoscale Spectroscopy in Medicine," (2013), pp. 439-472.
    88. E. C. Le Ru, and P. G. Etchegoin, "Quantifying SERS enhancements," MRS Bulletin 38, 631-640 (2013).
    89. G. Geka, A. Kanioura, V. Likodimos, S. Gardelis, N. Papanikolaou, S. Kakabakos, and P. Petrou, "SERS Immunosensors for Cancer Markers Detection," Materials 16, 3733 (2023).
    90. A. I. Pérez-Jiménez, D. Lyu, Z. Lu, G. Liu, and B. Ren, "Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments," Chemical Science 11, 4563-4577 (2020).
    91. Y. S. Yamamoto, Y. Ozaki, and T. Itoh, "Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering," Journal of Photochemistry and Photobiology C: Photochemistry Reviews 21, 81-104 (2014).
    92. B. P. Majee, Bhawna, and A. K. Mishra, "Bi-functional ZnO nanoparticles as a reusable SERS substrate for nano-molar detection of organic pollutants," Materials Research Express 6, 1250j1251 (2019).
    93. X. Wang, W. Shi, G. She, and L. Mu, "Surface-Enhanced Raman Scattering (SERS) on transition metal and semiconductor nanostructures," Physical Chemistry Chemical Physics 14, 5891-5901 (2012).
    94. S.-H. Ciou, Y.-W. Cao, H.-C. Huang, D.-Y. Su, and C.-L. Huang, "SERS Enhancement Factors Studies of Silver Nanoprism and Spherical Nanoparticle Colloids in The Presence of Bromide Ions," The Journal of Physical Chemistry C 113, 9520-9525 (2009).
    95. H. Zhou, X. Li, L. Wang, Y. Liang, A. Jialading, Z. Wang, and J. Zhang, "Application of SERS quantitative analysis method in food safety detection," Reviews in Analytical Chemistry 40, 173-186 (2021).
    96. D.-Y. Lin, C.-Y. Yu, C.-A. Ku, and C.-K. Chung, "Design, Fabrication, and Applications of SERS Substrates for Food Safety Detection: Review," Micromachines 14, 1343 (2023).
    97. Z. Huang, A. Zhang, Q. Zhang, and D. Cui, "Nanomaterial-based SERS sensing technology for biomedical application," Journal of Materials Chemistry B 7, 3755-3774 (2019).
    98. T. Szymborski, Y. Stepanenko, K. Niciński, P. Piecyk, S. M. Berus, M. Adamczyk-Popławska, and A. Kamińska, "Ultrasensitive SERS platform made via femtosecond laser micromachining for biomedical applications," Journal of Materials Research and Technology 12, 1496-1507 (2021).
    99. Y. Wang, P. Li, D. Lin, J. Chen, Y. Zhang, and L. Yang, "Ethanol-extraction SERS strategy for highly sensitive detection of poisons in oily matrix," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 259, 119883 (2021).
    100. Y.-H. Chen, C.-C. Chen, L.-C. Lu, C.-Y. Lan, H.-L. Chen, T.-H. Yen, and D. Wan, "Wafer-scale fibrous SERS substrates allow label-free, portable detection of food adulteration and diagnosis of pesticide poisoning," Sensors and Actuators B: Chemical 391, 134035 (2023).
    101. H. Wei, S. M. Hossein Abtahi, and P. J. Vikesland, "Plasmonic colorimetric and SERS sensors for environmental analysis," Environmental Science: Nano 2, 120-135 (2015).
    102. T. T. X. Ong, E. W. Blanch, and O. A. H. Jones, "Surface Enhanced Raman Spectroscopy in environmental analysis, monitoring and assessment," Science of The Total Environment 720, 137601 (2020).
    103. H. Liao, Q. Chen, Y. Shaoguo, Z. Feng, Z. Li, L. Lin, Y. Ren, G. Chen, and Z. Wang, "Highly ordered Si-based ZnO/Ag bilayer structure for recyclable SERS substrates with ultra-sensitivity," Ceramics International 50, 9344-9353 (2024).
    104. C. Huang, S. Jiang, F. Kou, M. Guo, S. Li, G. Yu, B. Zheng, F. Xie, C. Zhang, H. Yu, and J. Wang, "Development of jellyfish-like ZnO@Ag substrate for sensitive SERS detection of melamine in milk," Applied Surface Science 600, 154153 (2022).
    105. L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, "Au–ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates," Nanoscale 7, 5147-5151 (2015).
    106. F. Li, X. Mu, X. Tang, G. Song, H. Sun, X. Zha, P. Sun, J. Fang, D. Hu, S. Cong, and Z. Zhao, "Semiconductor SERS on Colourful Substrates with Fabry-Pérot Cavities," Angewandte Chemie International Edition 62, e202218055 (2023).
    107. L. Guo, X. Zhang, P. Li, R. Han, Y. Liu, X. Han, and B. Zhao, "Surface-enhanced Raman scattering (SERS) as a probe for detection of charge-transfer between TiO2 and CdS nanoparticles," New Journal of Chemistry 43, 230-237 (2019).
    108. S. Lei, C. Tao, J. Li, X. Zhao, and W. Wang, "Visible light-induced charge transfer to improve sensitive surface-enhanced Raman scattering of ZnO/Ag nanorod arrays," Applied Surface Science 452, 148-154 (2018).
    109. Y. Wang, J. Jin, H. Ma, M. Zhang, Q. Li, H. Wang, B. Zhao, W. Ruan, and G. Yan, "Enhanced charge-transfer induced by conduction band electrons in aluminum-doped zinc oxide/molecule/Ag sandwich structures observed by surface-enhanced Raman spectroscopy," Journal of Colloid and Interface Science 610, 164-172 (2022).
    110. T.-J. Wang, Y.-T. Huang, Z.-Y. Liu, and N. R. Barveen, "Photochemical synthesis of ZnO/Ag heterogeneous nanostructure on chemically patterned ferroelectric crystals for high performance SERS detection," Journal of Alloys and Compounds 864, 158120 (2021).
    111. S. K. Vemuri, S. Khanna, Utsav, S. Paneliya, V. Takhar, R. Banerjee, and I. Mukhopadhyay, "Fabrication of silver nanodome embedded zinc oxide nanorods for enhanced Raman spectroscopy," Colloids and Surfaces A: Physicochemical and Engineering Aspects 639, 128336 (2022).
    112. A. Cook, and T. Giorgio, "Fabrication of silver-decorated zinc oxide nanowire sensor in microchannels for surface-enhanced Raman spectroscopy," Journal of Nanophotonics 18, 036002 (2024).
    113. G. Barbillon, O. Graniel, and M. Bechelany, "Assembled Au/ZnO Nano-Urchins for SERS Sensing of the Pesticide Thiram," Nanomaterials 11, 9 (2021).
    114. Z. Wang, W. Zeng, K. Zhang, F. Xie, G. Yu, M. Mei, C. Huang, and J. Wang, "Silver-decorated three-dimensional ZnO nanoflowers enhancing the electromagnetic coupling for ultrasensitive SERS detection of multi-pesticide residues," Journal of Alloys and Compounds 999, 175035 (2024).
    115. Y. Liu, A. Dang, X. Liu, Y. Han, J. Chen, A. Zada, Y. Sun, Z. Yuan, F. Luo, T. Li, and T. Zhao, "Synergistic Resonances and Charge Transfer in Double-Shelled ZnO Hollow Microspheres for High-Performance Semiconductor-Based SERS Substrates," ACS Applied Nano Materials 7, 10104-10113 (2024).
    116. J. Yeo, S. Hong, G. Kim, H. Lee, Y. D. Suh, I. Park, C. P. Grigoropoulos, and S. H. Ko, "Laser-Induced Hydrothermal Growth of Heterogeneous Metal-Oxide Nanowire on Flexible Substrate by Laser Absorption Layer Design," ACS Nano 9, 6059-6068 (2015).
    117. C. Cheng, M. Lei, L. Feng, T. L. Wong, K. M. Ho, K. K. Fung, M. M. T. Loy, D. Yu, and N. Wang, "High-Quality ZnO Nanowire Arrays Directly Fabricated from Photoresists," ACS Nano 3, 53-58 (2009).
    118. C. Li, G. Hong, P. Wang, D. Yu, and L. Qi, "Wet Chemical Approaches to Patterned Arrays of Well-Aligned ZnO Nanopillars Assisted by Monolayer Colloidal Crystals," Chemistry of Materials 21, 891-897 (2009).
    119. S. Wang, Y. Yang, J. Chai, K. Zhu, X. Jiang, and Z. Du, "Nanoimprint assisted transfer of different density vertically aligned ZnO nanorod arrays," Rsc Advances 6, 64332-64337 (2016).
    120. Y. Xiong, M. Fang, Q. Zhang, W. Liu, X. Liu, L. Ma, and X. Xu, "Reproducible and arbitrary patterning of transparent ZnO nanorod arrays for optic and biomedical device integration," Journal of Alloys and Compounds 898, 163003 (2022).
    121. V. Gaddam, R. R. Kumar, M. Parmar, M. M. Nayak, and K. Rajanna, "Synthesis of ZnO nanorods on a flexible Phynox alloy substrate: influence of growth temperature on their properties," Rsc Advances 5, 89985-89992 (2015).
    122. N. Chouhan, C. Yeh, S. Hu, J. Huang, C. Tsai, R.-S. Liu, W. Chang, and K. Chen, "Array of CdSe QD-Sensitized ZnO Nanorods Serves as Photoanode for Water Splitting," Journal of The Electrochemical Society 157, B1430-B1433 (2010).
    123. M. Poudel, R. Pokharel, S. K.C, S. C. Awal, and R. Pradhananga, "Biosynthesis of Silver Nanoparticles Using Ganoderma Lucidum and Assessment of Antioxidant and Antibacterial Activity," International Journal of Applied Sciences and Biotechnology 5, 523-531 (2017).
    124. Samriti, P. Kumar, A. Y. Kuznetsov, H. C. Swart, and J. Prakash, "Sensitive, Stable, and Recyclable ZnO/Ag Nanohybrid Substrates for Surface-Enhanced Raman Scattering Metrology," ACS Mater Au 4, 413-423 (2024).
    125. M. E. Koleva, N. N. Nedyalkov, R. Nikov, R. Nikov, G. Atanasova, D. Karashanova, V. I. Nuzhdin, V. F. Valeev, A. M. Rogov, and A. L. Stepanov, "Fabrication of Ag/ZnO nanostructures for SERS applications," Applied Surface Science 508 (2020).
    126. X. Zhu, J. Wang, D. Yang, J. Liu, L. He, M. Tang, W. Feng, and X. Wu, "Fabrication, characterization and high photocatalytic activity of Ag-ZnO heterojunctions under UV-visible light," RSC Adv 11, 27257-27266 (2021).
    127. X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu, "Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films," Journal of the American Chemical Society 126, 62-63 (2004).
    128. J. Li, Q. Sun, S. Han, J. Wang, Z. Wang, and C. Jin, "Reversibly light-switchable wettability between superhydrophobicity and superhydrophilicity of hybrid ZnO/bamboo surfaces via alternation of UV irradiation and dark storage," Progress in Organic Coatings 87, 155-160 (2015).
    129. M. Beitollahpoor, M. Farzam, and N. S. Pesika, "Determination of the Sliding Angle of Water Drops on Surfaces from Friction Force Measurements," Langmuir 38, 2132-2136 (2022).
    130. Z. Qi, T. Akhmetzhanov, A. Pavlova, and E. Smirnov, "Reusable SERS Substrates Based on Gold Nanoparticles for Peptide Detection," Sensors 23, 6352 (2023).
    131. E. A. Bezus, L. L. Doskolovich, and V. A. Soifer, "Near-wavelength diffraction gratings for surface plasmon polaritons," Optics Letters 40, 4935-4938 (2015).
    132. N. S. Aminah, T. Lertvanithphol, A. Sathukarn, M. Horprathum, H. Alatas, V. Fauzia, S. P. Santosa, A. Alni, and M. Djamal, "Fabrication of Au coated sinusoidal grating substrates as SPP-SERS sensor chip for trace-level detection of explosive," Optical Materials 149, 114952 (2024).
    133. U. Riaz, and N. Singh, "Facile synthesis of malachite green incorporated conducting polymers: A comparison of theoretical and experimental studies," Synthetic Metals 257 (2019).
    134. A. K. Pal, S. Pagal, K. Prashanth, G. K. Chandra, S. Umapathy, and B. M. D, "Ag/ZnO/Au 3D hybrid structured reusable SERS substrate as highly sensitive platform for DNA detection," Sensors and Actuators B: Chemical 279, 157-169 (2019).
    135. H. N. Luong, N. M. Nguyen, L. N. T. Nguyen, C. K. Tran, T. T. Nguyen, L. T. Duy, N. P. Nguyen, T. M. H. Huynh, T. T. Tran, B. T. Phan, T. V. T. Thi, and V. Q. Dang, "Detection of carbendazim by utilizing multi-shaped Ag NPs decorated ZnO NRs on patterned stretchable substrate through surface-enhanced Raman scattering effect," Sensors and Actuators a-Physical 346, 8 (2022).
    136. Y. Liu, R. Li, N. Zhou, M. Li, C. Huang, and H. Mao, "Recyclable 3D SERS devices based on ZnO nanorod-grafted nanowire forests for biochemical sensing," Applied Surface Science 582 (2022).
    137. P. C. Tseng, J. L. Bai, C. F. Hong, C. F. Lin, and H. Y. Hsueh, "Surface‐Buckling‐Enhanced 3D Metal/Semiconductor SERS‐Active Device for Detecting Organic Chemicals," Advanced Optical Materials 13, 2401874 (2025).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE