簡易檢索 / 詳目顯示

研究生: 陳可涵
Chen, Ke-Han
論文名稱: 形狀記憶合金加強之複合層板的挫屈分析
Buckling analysis of shape memory alloy reinforced composite laminate
指導教授: 蕭樂群
Shiau, Le-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 73
中文關鍵詞: 複合層板挫屈有限元素法形狀記憶合金
外文關鍵詞: Finite Element method, Shape memory alloys, composite laminate, buckling
相關次數: 點閱:99下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以有限元素法探討含有形狀記憶合金(SMA)之方形複合層板中SMA特性對層板挫屈行為的影響。文中探討SMA纖維以APT和ASET兩種不同的方式埋入層板中,並考慮其分佈情況和複合層板疊層方向改變,觀察整體系統挫屈載重的變化。結果顯示使用ASET方法對結構的影響大於APT方法許多,且SMA纖維含量和預應變越多,其產生回復應力越大,使得挫屈載重大幅提升。而SMA纖維越集中於承受高彎曲作用之層板中心處,亦可有效提升挫屈載重。對於複合層板中SMA疊層之勁度相對於其他疊層之勁度較低時,將導致SMA對於整體挫屈行為變化所產生的效應越不明顯。

    The effect of shape memory alloy (SMA) on the buckling behavior of a rectangular composite laminate was investigated by Finite Element Method. The influence of SMA on buckling of composite laminates by varying the SMA fiber spacing was studied. Two ways to embed SMA fibers into composite laminates (namely: Active Property Tuning (APT) method and Active Strain Energy Tuning (ASET) Method) were considered. The results show that the ASET method is much better than the APT method in improving the buckling performance of the plate. When the SMA fibers are concentrated in the center area of the plate, the buckling load of the plate will be improved significantly. If the stiffness of the SMA layer is lower than other layers, the influence of the SMA on the buckling load of the plate will become subordinate.

    中文摘要 英文摘要 誌謝 目錄 表目錄 ………………………………………………………………Ⅰ 圖目錄 ………………………………………………………………III 第一章 緒論……………………………………………………………1 第二章 公式推導……………………………………………………7 2.1 複合層板之基本公式………………………………………7 2.2 三角形板元素………………………………………………10 2.3 應變能…13 2.4 動態平衡方程式……………………………………………15 2.5 求解流程……………………………………………………16 第三章 程式驗證…………………………………………………………18 3.1 模型分析……………………………………………………18 3.2 數值分析…………………………………………………19 第四章 結果與討論………………………………………………………21 4.1 APT與ASET方法之影響……………………………………21 4.2 SMA纖維體積含量和預應變之影響………………………22 4.3 SMA纖維分佈之影響…………………………………………24 4.4 SMA纖維區塊分佈之影響………………………………………26 4.5疊層方向之影響……………………………………………29 4.6 SMA纖維疊層厚度之影響…………………………………30 第五章 結論………………………………………………………………32 參考文獻 …………………………………………………………………34 附錄 …………………………………………………………………38 表 …………………………………………………………………39 圖 …………………………………………………………………46 自述 …………………………………………………………………72 著作權聲明…………………………………………………………………73

    [1] Baz A, Iman K, McCoy J. “Active vibration control of flexible beams
    using shape memory actuators.” Journal of Sound and Vibration,1990,
    140(3),437–456.
    [2] Baz A, Poh S, Ro J, Gilheany J. “Control of the natural frequencies of
    nitinol-reinforced composite beams.” Journal of Sound and Vibration,
    1995,185(1),171–185.
    [3] Baz A, Chen T, Ro J. “Shape control of NITINOL-reinforced composite
    beams.” Composites,2000,Part B,31,631–642.
    [4] Rogers C A, Liang C, and Baker D K. “Dynamic Control Concepts Using
    Shape Memory Alloy Reinforced Plates.” Smart Materials,1989,
    Structures and Mathematical Issues, Technomic, Lancaster, PA..
    [5] Ostachowicz W M, Krawczuk M, Zak A. “Dynamics and buckling of a
    multilayer composite plate with embedded SMA wires.” Composite
    Structures,2000,48,163–167.

    [6] Run Xin Zhang, Qing Qing Ni, Arata Masuda, Takahiko Yamamura,
    Masuharu Iwamoto. “Vibration characteristics of laminated composite
    plates with embedded shape memory alloys.” Composite Structures,
    2006, 74,389–398.
    [7] Balapgol B S, Bajoria K M, Kulkarni S A. “Natural frequencies of a
    multilayer SMA laminated composite cantilever plate.” Smart Materials
    and Structures,2006,15,1021–1032.
    [8] Baz A, Chen T. “Acitive control of the laterar buckling of
    Nitinol-reinforced composite beams.” Active Materials and Smart
    Structures,1995,SPIE Vol.2427,30–48.
    [9] Ro J, Baz A. “Nitinol-reinforced plates: Part II. Static and buckling
    characteristics.” Composite Engineering,1995,5(1),77–90.
    [10] Baz A, Tampe L. “Active control of buckling of flexible beams.”
    Proceedings of 8th Biennial Conference on Failure prevention an
    Reliability,Montreal,New York,ASME,1989,211–218.
    [11] Zhong Z W, Chen R R, Mei C. Buckling and post-buckling of shape
    memory alloy fiber-reinforced composite plates. ASME,
    1994,AD-41/PDP-293,115–132.
    [12] Thompson S P, Loughlan J. “Adaptive post-buckling response
    of carbon fiber composite plates employing SMA actuators.” Composite
    Structures,1997,38,667–678.
    [13] Rogers C A, Liang C, Jia J. “Structural modification of
    simply-supported laminated plates using embedded shape memory alloy
    fibers.” Computers and Structures,1991,38,569–580.
    [14] Ostachowicz W M, Kaczmarczyk S. “Vibrations of composite plates
    with SMA fibers in a gas stream with defects of the type of
    delamination.” Composite Structures,2001,54,305–311.
    [15] Tawfik M, Duan B, Goek S, Ro J, Mei C. “Analysis and control of large
    thermal deflection of composite plates using shape memory alloy.”
    SPIE 7th International Symposium on Smart Structures and Materials
    Newport Beach,CA,USA,March 2000,vol. 3991,358–365.
    [16] Lee H J, Lee J J. “A numerical analysis of the buckling and
    post-buckling behavior of laminated composite shells with embedded
    shape memory alloy wire actuators.” Smart Materials and
    Structures,2000,9,780–787.

    [17] Leissa A W, Martin A F. “Vibration and Buckling of Rectangular
    Composite Plates with Variable Fiber Spacing.” Composite Structures,
    1990,14,339–357.
    [18] Yang T Y. “Finite Element Structural Analysis.” Prentice-Hall,
    Inc.,1986.
    [19] Cross W B, Kariotis A H, Stimler F J. “Nitinol Characterization
    Study.” 1970,CR-1433,Hampton, VA: NASA.

    下載圖示 校內:2013-08-26公開
    校外:2013-08-26公開
    QR CODE