簡易檢索 / 詳目顯示

研究生: 張庭維
Chang, Ting-Wei
論文名稱: T形RC結構牆之雙軸行為模擬及有效翼牆寬度探討
Behavior and Effective Flange Width of T-shaped RC Shear Walls Subjected to Biaxial Loading
指導教授: 洪崇展
Hung, Chung-Chan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 179
中文關鍵詞: 剪力牆面外位移剪力遲滯效應有效翼牆寬度LS-DYNA
外文關鍵詞: RC Shear Walls, T-shaped Wall, Biaxial Loading, The Finite Element Analysis, Shear Lag Effect, Effective Flange Width
相關次數: 點閱:137下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來常見中高樓層建築物受地震力作用而毀損、傾倒。為了增加建築結構之消能及抗剪能力,耐震結構中會配置鋼筋混凝土剪力牆以提供良好的剪力強度與結構勁度。有許多研究指出RC剪力牆面內方向及面外方向的相互耦合作用,明顯減弱了結構的耐震能力。RC剪力牆對於抵抗雙軸方向位移時,破壞情形相較抵抗單軸方向位移更加嚴重。此外根據研究報告之實驗結果觀察發現:非矩形斷面RC剪力牆受側推力作用下,翼牆與腹牆之接頭處會有明顯的剪力遲滯效應。本研究利用有限元素LS-DYNA軟體模擬RC矩形斷面結構牆與T形斷面結構牆雙軸互制之行為。藉由變化翼牆寬度、翼牆厚度、高寬比、面外位移比及軸壓比等參數,探討矩形結構牆與T形結構牆面內方向的耐震能力。並且量化翼牆內剪力遲滯效應的影響,探討建議有效翼牆寬度。

    Nowadays one of the techniques to increase the lateral load capacity and structural stiffness of high-rise buildings is by using Reinforced concrete (RC) structural walls. According to former researchers, the lateral load capacity of the structural walls is influenced by the interaction between its weak and strong axis. In this study, it was done a pushover analysis to comprehend the behavior of T-shaped RC walls under biaxial loading.
    LS-DYNA was used to simulate different scenarios in which the model had out-of-plane deflections on the weak axis with drift ratios of 1%, 2%, 4%. Then a monotonic load of 5% was included on the strong axis. It was possible to realize a comparison between the response of uniaxial and biaxial loading.
    The results indicate that a major factor on the behavior of T-shaped wall subjected to biaxial loading was the tension in the flange. It was observed that the increase in the axial load significantly decreased the lateral load capacity. On the other hand, an increase in the width of the flange only caused minor decrease in lateral load capacity. The shear lag effect ratio was obtained in the case when the flange of the T-shaped walls was under tension and using statics method to obtain the Effective flange width.

    摘要 I 致謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1. 研究動機 1 1.2. 研究目的 2 1.3. 研究方法 2 1.4. 論文架構 3 第二章 文獻回顧 4 2.1. 鋼筋混凝土結構牆 4 2.1.1. 矩形結構牆 4 2.1.2. 非矩形結構牆 9 2.2. RC結構牆極限層間位移 13 2.3. 剪力遲滯效應(Shear Lag Effect) 14 2.4. 有效翼牆寬度 15 第三章 分析架構 18 3.1. LS-DYNA軟體介紹 18 3.2. 驗證試體及有限元素模型配置 18 3.3. 材料模型 22 3.3.1. 混凝土材料模型 22 3.3.2. 鋼筋材料模型 24 3.4. 有限元素模型驗證 26 第四章 矩形牆側推分析結果 29 4.1. 雙軸加載方式 29 4.2. 矩形牆參數介紹 30 4.3. 矩形牆側推模擬結果 33 4.3.1. 矩形高牆 33 4.3.2. 中高矩形牆 35 4.3.3. 低矮矩形牆 37 4.4. 矩形牆分析結果 39 4.4.1. 極限狀態強度 39 4.4.2. 彎矩強度 42 第五章 T形牆分析結果 44 5.1. 雙軸加載方式 44 5.2. T形牆參數介紹 44 5.3. T形牆設計彎矩及設計剪力 56 5.4. T形牆側推模擬結果 60 5.4.1. T1W1模型 60 5.4.2. T1W2模型 69 5.4.3. T1W3模型 78 5.4.4. T2W1模型 87 5.4.5. T3W1模型 96 5.5. 分析結果比較 105 5.5.1. 極限狀態強度 105 5.5.2. 彎矩強度 120 5.5.3. 剪力遲滯效應比 132 5.6. T形斷面牆與C形斷面牆之比較 145 5.6.1. 斷面配置 145 5.6.2. 分析結果比較 146 第六章 有效翼牆寬度之建議公式 149 6.1. 有效翼牆寬度之公式建議 150 6.1.1. T1W1斷面之剪滯效應比Rsle線性迴歸 151 6.1.2. 翼牆寬度修正係數(αl) 154 6.1.3. 翼牆厚度修正係數(αt) 157 6.1.4. 軸壓修正係數(αP) 160 6.2. 有效翼牆寬度公式之驗證 163 6.2.1. Zhang and Li(2016)之TWS剪力牆及TWN剪力牆 163 6.2.2. 驗證結果 167 第七章 結論與建議 169 參考文獻 172

    史庆轩, 王斌, 王朋, & 田建勃. (2014). T 形截面 RC 剪力墙双向抗震性能对比分析. 西安建筑科技大学学报 (自然科学版), 46(2).
    史庆轩, 王斌, 郑晓龙, & 田建勃. (2014). T 形截面带翼缘剪力墙剪滞效应分析及有效翼缘宽度讨论. 建筑结构, 44(22), 67-71.
    郑星, 沙庆, & 仲崇霖. (2015). 钢筋混凝土带翼缘剪力墙承载力计算分析. 山西建筑, 41(24), 52-53.
    洪崇展, 戴艾珍, 顏誠皜, 溫國威, & 張庭維. (2017). 新世代多功能性.
    洪崇展, 盧威廷, & 鄭宇翔. (2017). 耦合結構牆性能化抗震設計法. 結構工程, 32(1), 49-70.
    曾昱. (2016). 中低型鋼筋混凝土結構牆性能化設計參數之研究. 成功大學土木工程學系碩士學位論文.
    葉宇軒. (2017). RC剪力牆於雙軸位移之行為模擬與分析. 成功大學土木工程學系碩士學位論文.
    ACI Committee 318. (2015). Building Code Requirements for Structural Concrete (ACI 318-14): An ACI Standard: Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14), an ACI Report. American Concrete Institute.
    American Society of Civil Engineers, & Structural Engineering Institute. (2014). Seismic Evaluation and Retrofit of Existing Buildings. American Society of Civil Engineers.
    BAHTIAR, T. A., & KUSUNOKI, K. (2013). EXPERIMENTAL STUDY OF EFFECTIVE FLANGE WIDTH ON SYMMETRICAL CROSS-SECTION WALLS. Bulletin of the International Institute of Seismology and Earthquake Engineering, 47, 85-90.
    Beyer, K., Dazio, A., & Priestley, M. J. N. (2008). Quasi-static cyclic tests of two U-shaped reinforced concrete walls. Journal of Earthquake Engineering, 12(7), 1023-1053.
    Beyer, K., Hube, M., Constantin, R., Niroomandi, A., Pampanin, S., Dhakal, R., ... & Wallace, J. W. (2017). Reinforced concrete wall response under uni-and bi-directional loading. In Proceedings of the 16th World Conference on Earthquake Engineering (No. EPFL-CONF-224465).
    BHARTI, V., & AKHTAR, S. THE EFFECT OF FLANGE THICKNESS ON THE BEHAVIOUR OF DIFFERENT TYPES OF FLANGED SHEAR WALL.
    Brueggen, B. L., French, C. E., & Sritharan, S. (2017). T-Shaped RC Structural Walls Subjected to Multidirectional Loading: Test Results and Design Recommendations. Journal of Structural Engineering, 143(7), 04017040.
    Choi, C. S., Ha, S. S., Lee, L. H., Oh, Y. H., & Yun, H. D. (2004). Evaluation of deformation capacity for RC T-shaped cantilever walls. Journal of earthquake engineering, 8(03), 397-414.
    Code, U. B. (1997). UBC. 1997. In International Conference of Building Officials(Vol. 2).
    Constantin, R. T. (2016). Seismic behaviour and analysis of U-shaped RC walls.
    Foster, S. J., & Attard, M. M. (2001). Strength and ductility of fiber-reinforced high-strength concrete columns. Journal of Structural Engineering, 127(1), 28-34.
    Hasnalbant, M., & Eyyubov, C. The Effects of Cross Sectional Dimensions on the Behavior of L-Shaped RC Structural Members.Hassan, M., & El-Tawil, S. (2003). Tension flange effective width in reinforced concrete shear walls. Structural Journal, 100(3), 349-356.
    Hung, C. C., Hu, F. Y., & Yen, C. H. (2018). Behavior of slender UHPC columns under eccentric loading. Engineering Structures, 174, 701-711.
    Hung, C. C., & Hu, F. Y. (2018). Behavior of high-strength concrete slender columns strengthened with steel fibers under concentric axial loading. Construction and Building Materials, 175, 422-433.
    Hung, C. C., & Lu, W. T. (2018). Tall hybrid coupled structural walls: seismic behavior and design suggestions. International Journal of Civil Engineering, 16(5), 567-582.
    Hung, C. C., Su, Y. F., & Su, Y. M. (2018). Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials. Composites Part B: Engineering, 133, 15-25.
    Hung, C. C., Li, H., & Chen, H. C. (2017). High-strength steel reinforced squat UHPFRC shear walls: cyclic behavior and design implications. Engineering Structures, 141, 59-74.
    Hung, C. C., & Lu, W. T. (2017). A performance-based design method for coupled wall structures. Journal of Earthquake Engineering, 21(4), 579-603.
    Hung, C. C., Su, Y. F., & Hung, H. H. (2017). Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability. Cement and Concrete Composites, 80, 200-209.
    Hung, C. C., & Yau, W. G. (2017). Vulnerability evaluation of scoured bridges under floods. Engineering Structures, 132, 288-299.
    Hung, C. C., & Chueh, C. Y. (2016). Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar. Engineering Structures, 122, 108-120.
    Hung, C. C., & Su, Y. F. (2016). Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations. Construction and Building Materials, 118, 194-203.
    Hung, C. C., & Chen, Y. S. (2016). Innovative ECC jacketing for retrofitting shear-deficient RC members. Construction and building materials, 111, 408-418.
    Hung, C. C., Yen, W. M., & Yu, K. H. (2016). Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: experimental investigation and computational analysis. Construction and Building Materials, 107, 287-298.
    Hung, C. C., & Lu, W. T. (2015). Towards achieving the desired seismic performance for hybrid coupled structural walls. Earthquakes and Structures, 9(6), 1251-1272.
    Hung, C. C., & Yen, W. M. (2014). Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars. Procedia Engineering, 79, 506-512.
    Hung, C. C., & Yau, W. G. (2014). Behavior of scoured bridge piers subjected to flood-induced loads. Engineering Structures, 80, 241-250.
    Hung, C. C., & Su, Y. F. (2013). On modeling coupling beams incorporating strain-hardening cement-based composites. Computers and Concrete, 12(4), 565-583.
    Hung, C. C., Su, Y. F., & Yu, K. H. (2013). Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites. Construction and Building Materials, 41, 37-48.
    Hung, C. C., & Li, S. H. (2013). Three-dimensional model for analysis of high performance fiber reinforced cement-based composites. Composites Part B: Engineering, 45(1), 1441-1447.
    Hung, C. C. (2012). Modified full operator hybrid simulation algorithm and its application to the seismic response simulation of a composite coupled wall system. Journal of Earthquake Engineering, 16(6), 759-776.
    Hung, C. C., & El-Tawil, S. (2011). Seismic behavior of a coupled wall system with HPFRC materials in critical regions. Journal of Structural Engineering, 137(12), 1499-1507.
    Hung, C. C., & El-Tawil, S. (2010). Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites. ACI Materials Journal, 107(6).
    Ile, N., & Reynouard, J. M. (2005). Behaviour of U-shaped walls subjected to uniaxial and biaxial cyclic lateral loading. Journal of Earthquake Engineering, 9(01), 67-94.
    Kabeyasawa, T., Kato, S., Sato, M., Kabeyasawa, T., Fukuyama, H., Tani, M., ... & Hosokawa, Y. (2014, July). Effects of bi-directional lateral loading on the strength and deformability of reinforced concrete walls with/without boundary columns. In Proceedings of the 10th US National Congress on Earthquake Engineering.
    Key, S. W., Biffle, J. H., & Krieg, R. D. (1976). Study of the computational and theoretical differences of two finite strain elastic--plastic constitutive models(No. SAND-76-5428; CONF-760812-1). Sandia Labs., Albuquerque, N. Mex.(USA).
    Khatami, S. M., & Kheyroddin, A. (2011). The effect of flange thickness on the behavior of flanged-section shear walls. Procedia Engineering, 14, 2994-3000.
    Kwan, A. K. H. (1996). Shear lag in shear/core walls. Journal of Structural Engineering, 122(9), 1097-1104.
    Liu, C., Wei, X., Ni, X., & He, G. (2017). Research on Shear Lag Effect of T-shaped Short-leg Shear Wall. Periodica Polytechnica. Civil Engineering, 61(3), 602.
    Murray, Y. D. (2007). Users manual for LS-DYNA concrete material model 159(No. FHWA-HRT-05-062).
    Priestley, M. J. N. (2003). Revisiting myths and fallacies in earthquake engineering. The Ninth Mallet-Milne Lecture organized by The Society for Earthquake and Civil Engineering Dynamics.
    SEAOC Seismology Committee. (2006). SEAOC Blue Book: Seismic Design Recommendations.
    Shi, Q. X., & Wang, B. (2016). Simplified calculation of effective flange width for shear walls with flange. The Structural Design of Tall and Special Buildings, 25(12), 558-577.
    Tatsuya, I. M. A. N. I. S. H. I. (1996). Post-yield behaviours of multi-story reinforced concrete shear walls subjected to bilateral deformations under axial loading. In Proceedings of the 11th World Conference on Earthquake Engineering.
    Thomsen IV, J. H., & Wallace, J. W. (2004). Displacement-based design of slender reinforced concrete structural walls—experimental verification. Journal of Structural Engineering, 130(4), 618-630.
    Wallace, J. W. (1996). Evaluation of UBC-94 provisions for seismic design of RC structural walls. Earthquake Spectra, 12(2), 327-348.

    ZHANG, Z., & LI, B. (2013, September). OUT-OF-PLANE REATION OF RC STRUCTURAL WALLS IN NON-PRINCIPAL BENDING DIRECTIONS. In Proceedings of the Thirteenth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-13) (pp. C-1). The Thirteenth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-13).
    Zhang, Z., & Li, B. (2016). Seismic performance assessment of slender T-shaped reinforced concrete walls. Journal of Earthquake Engineering, 20(8), 1342-1369.
    Zhang, Z., & Li, B. (2017). Seismic behaviour of non-rectangular structural RC wall in the weak axis. Magazine of Concrete Research, 69(12), 606-617.
    Zhang, Z., & Li, B. (2017). Shear lag effect in tension flange of RC walls with flanged sections. Engineering Structures, 143, 64-76.
    Zhang, Z., & Li, B. (2018). Effects of the shear lag on longitudinal strain and flexural stiffness of flanged RC structural walls. Engineering Structures, 156, 130-144.

    下載圖示 校內:2023-07-31公開
    校外:2023-07-31公開
    QR CODE