簡易檢索 / 詳目顯示

研究生: 藍功安
Lan, Kung-An
論文名稱: Sn-Zn系無鉛銲錫合金通電熔斷現象之凝固組織變化效應探討及統計分析
Statistical Analysis and Effect of Solidification Structural Variation on Electrification-Fusion Phenomenon of Sn-Zn Lead-Free Solder Alloys
指導教授: 呂傳盛
Lui, Truan-Sheng
陳立輝
Chen, Li-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 116
中文關鍵詞: 凝固組織變化通電熔斷無鉛銲錫
外文關鍵詞: lead-free solder, electrification-fusion, solidification structural variation
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以Sn-Zn系二元無鉛銲錫合金之通電熔斷現象為探討重點,藉由凝固速率、後熱處理及Zn添加量 (7, 9, 11, 14wt.%) 之改變來調查本材料通電熔斷電流之變化。包括:(1) 以DSC分析結果來調查低熔點共晶相之吸熱量與熔斷電流之間關係。(2) 以直流及交流通電之實驗數據利用統計分析常用之直方圖、盒型圖整理各試片之數據分佈特性,並利用韋伯解析法檢討各數據組分佈型態之韋伯模數m值變化與該試料之可靠度。

      根據通電熔斷電流結果顯示,試料之凝固速率愈慢,Zn-rich相有粗大傾向,且因Sn-Zn共晶相先行熔解之吸熱焦耳量減少,通電熔斷電流有升高傾向。就相同凝固速率 (中冷) 試料組經後熱處理之調查結果顯示,120℃及180℃經3小時後熱處理條件對熔斷電流變化沒有明顯效應。就相同凝固速率 (中冷) 試料組之Zn含量效應調查結果顯示,共晶相之吸熱焦耳值因Zn增加而有減少傾向,此證據與熔斷電流升高之數據具有一致性。
      
      此外,本研究中各實驗參數之數據組皆有20支試片之實驗數據,各實驗組之數據經韋伯解析之後,在凝固速率方面之數據組,直流電之快冷試料無法做韋伯解析,中冷和慢冷試料之韋伯模數 (m值) 有偏低傾向甚至低於3.2;交流電之快冷及慢冷試料無法做韋伯解析。同時在凝固速率固定時則顯示,直流電和交流電在120℃後熱處理之試料無法做韋伯解析,直流電之180℃後熱處理試料之m值小於1.0;Zn含量效應方面,直流電的Sn-7Zn及交流電的Sn-7Zn及Sn-14Zn試料無法做韋伯解析,其他Zn 含量較高之數據組,其韋伯模數有偏低傾向。值得關注的實驗結果是Sn-Zn系合金在交流及直流條件之通電熔斷實驗結果共通性顯示有韋伯模數小於3.2甚至接近1.0附近,屬於趨近偶發型破壞模式而且有可靠度問題存在。

      The fusion phenomenon for Sn-Zn binary solder alloys had been mainly discussed in this study and examined the variation of fusion current by varying the solidification rate, post treatment, and zinc content (x=7, 9, 11, 14wt%) of Sn-Zn alloys. This study focused on (a) the relation between melting latent heat of eutectic phase and fusion current examined by DSC analysis, and (b) experimental data of DC and AC condition plotted as Histogram and Boxplot pointed to data distribution, and examined the data fluctuation of fusion current data sets to acquire the variation of m value and reliability by Weibull analysis.

      The results of fusion current showed that the Zn-rich phases coarsened with decreasing the solidification rate. On the other hand, the melting latent heat of Sn-Zn eutectic phase was closely related to the value of fusion current. After post-treatment, a little influence of average fusion current value can be recognized. The results of specimen with different zinc content showed that the melting latent heat of Sn-Zn eutectic phase tended to decrease due to increasing the zinc content, the evidence was consistent with the increases of fusion current.

      Besides, there were 20 experimental data for each experimental parameter, each experimental data set by Weibull analysis showed that the data set of solidification rate indicated faster cooling specimens for DC cannot apply to Weibull analysis, medium and slower cooling specimens indicated Weibull modulus (m value) enen lower than 3.2; faster and slower cooling specimens for AC cannot apply to Weibull analysis. 1200C-post-treatment for DC and AC cannot apply to Weibull analysis, and 1800C-post-treatment specimens for DC indicated m value lower than 1.0; the data set of zinc content showed Sn-7Zn for DC and Sn-7Zn, Sn-14Zn for AC cannot apply to Weibull analysis, and the data set with higher zinc content, their m values significantly
    tended to decrease. A notable experimental result was that the experimental results of fusion current for AC and DC on Sn-Zn alloys commonly showed a Weibull modulus lower than 3.2 and even close to 1.0 that actually can be defined as a kind of random failure pattern. However, the above-mentioned experimental results depicted a reliability suspicion of the Sn-Zn alloys.

    中文摘要…………………………………………………Ⅰ 英文摘要…………………………………………………Ⅲ 誌謝………………………………………………………Ⅳ 總目錄……………………………………………………Ⅴ 表目錄……………………………………………………Ⅷ 圖目錄……………………………………………………Ⅸ 第一章 前言………………………………………………1 第二章 文獻回顧…………………………………………3 2-1 Sn-Zn系無鉛銲錫合金之相關研究………………3 2-2 無鉛銲錫之通電熔斷問題…………………………4 2-3 直方圖 (Histogram) 與盒型圖 (Boxplot) 之統 計應用[21]…………………………………………5 2-4 材料可靠度、破壞率及韋伯模數分析……………6 2-4-1 材料可靠度工程之統計意義[22-24]及破壞型 態的種類……………………………………6 2-4-2 韋伯分佈函數 (Weibull distribution function) [22-26]…………………………9 2-4-3 韋伯三參數之物理意義[22-26]……………10   2-4-4 韋伯三參數的求法[26]……………………12 第三章 實驗步驟與方法………………………………23 3-1 合金熔煉配製……………………………………23 3-2 金相觀察…………………………………………24 3-3 各試料之示差掃描熱量分析……………………24 3-4 通電熔斷試驗……………………………………25 3-4-1 直流通電熔斷試驗…………………………25 3-4-2 交流通電熔斷試驗…………………………25   3-4-3 熔斷區附近微觀組織變化觀察……………26 第四章 實驗結果與討論………………………………32 4-1 Sn-9Zn合金通電熔斷電流之凝固速率效應檢 討…………………………………………………33 4-1-1 顯微組織觀察………………………………33 4-1-2 共晶熔解吸熱焦耳值之DSC分析…………33 4-1-3 直流熔斷電流統計分析及可靠度之凝固速率 效應…………………………………………34 4-1-4 交流熔斷電流統計分析及可靠度之凝固速率 效應…………………………………………36 4-1-5 凝固速率效應對熔斷電流與DSC之關係……38 4-1-6 熔斷電流最大值及最小值試片之顯微組織差異觀 察…………………………………………………39 4-2 通電熔斷對Sn-9Zn銲錫合金之後熱處理效應檢 討…………………………………………………40 4-2-1 顯微組織觀察………………………………40   4-2-2 共晶熔解吸熱焦耳值之DSC分析……………40 4-2-3 直流熔斷電流統計分析及可靠度之後熱處理 效應…………………………………………41 4-2-4 交流熔斷電流統計分析及可靠度之後熱處理 效應…………………………………………43 4-2-5 後熱處理效應對熔斷電流與DSC之關係……45 4-2-6 熔斷電流最大值及最小值試片之顯微組織差 異觀察………………………………………46 4-3 Sn-Zn合金通電熔斷電流變化之Zn含量效應檢 討…………………………………………………47 4-3-1 顯微組織觀察………………………………47 4-3-2 共晶熔解吸熱焦耳值之DSC分析……………47 4-3-3 直流熔斷電流統計分析及可靠度之Zn含量效 應……………………………………………49 4-3-4 交流熔斷電流統計分析及可靠度之Zn含量效 應……………………………………………51 4-3-5 Zn含量效應對熔斷電流與DSC之關係………53 4-3-6 熔斷電流最大值及最小值試片之顯微組織差 異觀察………………………………………54 4-4 m值出現在1.0附近各試料之釐清與檢討………55 第五章 結論……………………………………………109 參考資料…………………………………………………111 附錄1直流熔斷電流值20組數據由小到大排列………114 附錄2交流熔斷電流值20組數據由小到大排列………115 自述………………………………………………………116

    1. 張淑如,『鉛對人體的危害』,勞工安全衛生簡訊,
    第12期,17-18頁,民國84年。

    2. 賴玄金,『從IPC Work’99會議中看無鉛銲錫電子構
    裝之應用現況與發展趨勢』,工業材料,第158期,
    99-107頁,民國89年。

    3. ASM Handbook, Hugh Baker, ASM International,
    Matals Park, Ohio, Vol.3, Alloy Phase
    Diagrams, 1992.

    4. Y. Miyazawa and T. Ariga, “Influences of
    Aging Treatment on Microstructure and
    Hardness of Sn- (Ag, Bi, Zn) Eutectic Solder
    Alloys”, Materials Transactions, JIM,
    Vol.42, pp. 776-782, 2001.

    5. K. Suganuma, T. ShotoKu, Y. Nakamura, and K.
    Niihara,“Wetting and Interface
    Microstructure between Sn-Zn Binary Alloys
    and Cu”, Journal of Materials Research,
    Vol.13, pp. 2859-2865, 1998.

    6. M. McCormack and S. Jin, “Design and
    Properties of New, Pb-Free Solder
    Alloys”, Journal of Electronic Materials,
    Vol.23, No.7, pp. 635-640, 1994.

    7. K. Kawashima, T. Ito, and M. Samurai,
    “Strain-Rate and Temperature Dependent Stress-
    Strain Curves of Sn-Pb Eutectic Alloy”,
    Journal of Materials Science, Vol.27, pp.
    6387-6390, 1992.

    8. M. McCormack and S. Jin, “Progress in the
    Design of New Lead-Free Solder Alloys”, JOM,
    Vol.45, No.7, pp. 36-40, 1993.

    9. E. P. Wood and K. L. Nimmo, “In Search of
    New Lead-Free Electronic Solders”, Journal
    of Electronic Materials, Vol.23, No.8,pp. 709-
    713, 1994.

    10. B. T. Lampe, “Room Temperature Aging
    Properties of Some Solder Alloys”,
    Welding Research, pp. 330s-340s, 1976.

    11. 莊強名,『無鉛化共晶銲錫合金之振動破壞特性研
    究』,國立成功大學材料科學及工程學系,博士論
    文,民國90年。

    12. 殷翠梅,『Sn-Ag系無鉛銲錫之振動破壞特性探
    討』,國立成功大學材料科學及工程學系,碩士論
    文,民國90年。

    13. C. Y. Liu, C. Chen, C. N. Liao, and K. N.
    Tu, “Microstructure-Electromigration
    Correlation in a Thin Stripe of Eutectic Sn-
    Pb Solder Stressed between Cu Electrodes”,
    Applied Physics Letters, Vol.75, pp. 58-60,
    1999.

    14. C. Y. Liu, C. Chen, and K. N. Tu,
    “Electromigration in Sn-Pb Solder Strips as a
    Function of Alloy Composition”, Journal of
    Applied Physics, Vol.88, pp. 5703-5709, 2000.

    15. T. Y. Lee and K. N. Tu, “Electromigration
    of Eutectic Sn-Pb Solder Interconnects for
    Flip Chip Technology”, Journal of Applied
    Physics, Vol.89, pp. 3189-3194, 2001.

    16. Q. T. Huynh, C. Y. Liu, C. Chen, and K. N.
    Tu, “Electromigration in Sn-Pb Solder
    Lines”, Journal of Applied Physics, Vol.89,
    pp. 4332-4335, 2001.

    17. H. Ye, C. Basaran, and D. C. Hopkin,
    “Damage Mechanics of Microelectronics Solder
    Joints under High Current Densities”,
    International Journal of Solids and
    Structures, Vol. 40, pp. 4021-4032, 2003.

    18. H. Ye, C. Basaran, and D. C. Hopkin,
    “Mechanical Degradation of Microelectronics
    Solder Joints under Current Stressing”,
    International Journal of Solids and
    Structures, Vol. 40, pp. 7269-7284, 2003.

    19. H. Ye, C. Basaran, and D. C. Hopkin, “Pb
    Phase Coarsening in Eutectic Pb/Sn Flip Chip
    Solder Joints under Electric Current
    Stressing”, International Journal of Solids
    and Structures, Vol. 41, pp. 2743-2755, 2004.

    20. 蔡東原,『共晶型錫基合金之高荷電破壞特性探
    討』,國立成功大學材料科學及工程學系,碩士論
    文,民國93年。

    21. Erwin Kreyszig, “Advanced Engineering
    Mathematics”, John Wiley and Sons, 8th
    Edition, pp. 1050-1053, 1999.

    22. P. D. T. O’Connor, “Practical Reliability
    Engineering”, John Wiley and Sons, 3rd
    Edition, Chap. 1-6, 1991.

    23. K. C. Kapur and L. R. Lamberson,
    “Reliability in Engineering Design”, John
    Wiley and Sons, Chap. 1-6, 1977.

    24. A. D. S. Carter, “Mechanical Reliability”,
    John Wiley and Sons, 2nd Edition, Chap. 2
    and 11, 1986.

    25. S. H. Dai and M. O. Wang, “Reliability
    Analysis in Engineering Applications”, Van
    Nostrand Reinhold, pp. 353-358, 1992.

    26. 真壁肇編,陳耀茂譯,『可靠性工程入門』,中華
    民國品質管制學會,第8章,民國78年。

    27. K. C. Kapur and L. R. Lamberson,
    “Reliability in Engineering Design”, John
    Wiley and Sons, Chap. 11, 1977.

    28. B. Faucher and W. R. Tyson, “On the
    Determination of Weibull Parameters”,
    Journal of Materials Science Letters, Vol.7,
    pp. 1199, 1998.

    下載圖示 校內:2007-07-28公開
    校外:2007-07-28公開
    QR CODE