| 研究生: |
徐維澤 Hsu, Wei-Tze |
|---|---|
| 論文名稱: |
雙指數跳躍擴散模型下之複合選擇權評價 Compound Option Pricing under a Double Exponential Jump-Diffusion Model |
| 指導教授: |
劉裕宏
Liu, Yu-hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融研究所 Graduate Institute of Finance |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 跳躍擴散過程 、雙指數分配 、複合選擇權 |
| 外文關鍵詞: | Compound Option, Jump-diffusion Process, Double Exponential Distribution |
| 相關次數: | 點閱:79 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文的主要目的,是將跳躍擴散過程加入標的資產報酬的波動方程式中,以評價複合選擇權。為了改善Black and Scholes (1973) 建立的模型假設,造成選擇權具有波動度微笑的現象,即資產報酬的分配呈現出高峰與左右兩端厚尾的特性,在此一跳躍擴散過程中,我們假設跳躍的頻率是服從複合卜瓦松過程,跳躍的幅度是服從由Kou (2002)所提出的雙指數分配。而數值分析中,加入雙指數跳躍擴散過程的標資產報酬分配,的確可以改善波動度微笑的現象; 我們也分析了在各三種不同歐式買權和複合買權的模型下加入雙指數跳躍擴散過程對選擇權價值的影響,當跳躍次數愈多,具有跳躍擴散的選擇權價格會愈大; 相反地當具有跳躍擴散的選擇權模型不存在跳躍的情況下,它們的選擇權價值會各自回復到B-S (1973) 或是 Geske (1979) 的價格。除此之外,我們的模型(DEJDCC)比Gukhal (2004) 和 Geske (1979) 一般化,更能描述波動度微笑的現象,在財務上的應用也因此更為廣泛。
This paper introduces the jump-diffusion process into pricing compound options and derives the related valuation formulas. We assume that the dynamic of the underlying asset return process consists of a drift component, a continuous Wiener process and discontinuous jump-diffusion processes which have jump times that follow the compound Poisson process and the logarithm of jump size follows the double exponential distribution proposed by Kou (2002). Numerical results indicate that the advantage of combining the double exponential distribution and normal distribution is that it can capture the phenomena of both the asymmetric leptokurtic features and the volatility smile. In addition, in order to examine the effect of the jumps, we compare three European option call models and three compound option models with and without jumps, and we observe that the higher the jump frequency we set, the greater the option values we obtain. The numerical results also show that the European call option and compound option models with jumps can reduce to those models without jumps when the jump frequency is set to zero. Furthermore, the compound call option under the double exponential jump diffusion model which we derived is more generalized than Gukhal (2004) and Geske (1979), and thus has wider application.
References
1. Ananthanarayanan, A. L. and E. S. Schwartz, 1980. “Retractable and Extendible Bonds: the Canadian Experience.” Journal of Finance 35, 31-47
2. Andersen, L. B. G. and R. Brotherton-Ratcliffe, 1997. “The Equity Option Volatility Smile: An Implicit Finite-Difference Approach.” Journal of Computational Finance 1, 5-37
3. Avellaneda M., C. Friedman, R. Holmes and D. Samperi, 1997. “Calibrating Volatility Surfaces via Relative-Entropy Minimization.” Application in Mathmatic Finance 4, 37-64.
4. Bakshi, G., C. Cao, and Z. Chen, 1997. “Empirical Performance of Alternative Option Pricing Models.” Journal of Finance 52, 2003-2049.
5. Bates, D., 1996, “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options.” Review of Financial Studies 9, 69-107.
6. Ben-Ameur, H., M. Breton and P. Francois, 2006. “A Dynamic Programming Approach to Price Installment Options.” European Journal of Operational Research 169, 667-676
7. Black, F. and M. Scholes, 1973, “The Pricing of Options and Corporate Liabilities.” Journal of Political Economy 81, 637-654.
8. Brennan, M. J., and E. S. Schwartz, 1985. “Evaluating Natural Resource Investments” Journal of Business 58, 135-157.
9. Cao, C., 1992. “Pricing Foreign Currency Options with Stochastic Volatility.” Working paper, University of Chicago.
10. Carr, P., 1988. “The Valuation of Sequential Exchange Opportunities.” Journal of Finance 43, 1235-1256.
11. Casimon, D., P.J. Engelen, L. Thomassen and M. Van Wouwe, 2004. “The Valuation of a NDA using a Six-fold Compound Option.” Research Policy 33, 41-51.
12. Copeland, T. and V. Antikarov, 2003. “Real Options: A Practitioner's Guide.” Thomson, UK.
13. Cortazar, G., E.S.,Schwartz, 1993. “A Compound Option Model of Production And Intermediate Inventories.” Journal of Business 66, 517-540.
14. Davis, M., W. Schachermayer, R. Tompkins, 2001. “Pricing No-Arbitrage Bounds and Robust Hedging of Installment Options.” Quantitative Finance 1, 597-610.
15. Derman, E., I. Kani, and N. Chriss, 1996. “Implied Trinomial Tree of the Volatility Smile.” The Journal of Derivatives 3, 7-22
16. Derman, Emanuel, and Iraj Kani, 1994. “Riding On a Smile.” Risk 7, 32-39
17. Duan, C.W., W. T. Lin and C. F. Lee, 2003. “Sequential Capital Budgeting as Real Options: The Case of a New DRAM Chipmaker in Taiwan.” Review of Pacific Basin Financial Markets and Polices 6, 87-112.
18. Dupire, B. 1997. “Pricing and Hedging with Smiles.” In Mathematics of Derivative Securities, Ch. 8, 103–111. Cambridge University Press.
19. Dupire, B., 1994. “Pricing with A Smile.” Risk 7, 18-20
20. Fama, E., 1965. “The Behavior of Stock Market Prices.” The Journal of Business, 38, 34-105.
21. Fischer, S., 1978.”Call Option Pricing When the Exercise Price is Uncertain, and the Valuation of Index Bonds.” Journal of Finance 33, 169-76.
22. Gemmill, G. and N. Kamiyama, 1997. “International Transmission of Option Volatility and Skewness: When You Are Smiling, Does The Whole World Smile?” Working Paper, City University Business School
23. Geske, R., 1977, “The Valuation of Corporate Liabilities as Compound Options.” Journal of Financial and Quantitative Analysis 12, 541-552.
24. Geske, R., 1979, “The Valuation of Compound Options.” Journal of Financial Economics 7, 63-81.
25. Geske, R., and H.E. Johnson, 1984a. “The American Put Option Valued Analytically. “ Journal of Finance 39, 1511-1524.
26. Geske, R., and H.E. Johnson, 1984b. “The Valuation of Corporate Liabilities as Compound Options: A Correction.” Journal of Financial and Quantitative Analysis 19, 231-232.
27. Heston, S. 1993. “A Closed-Form Solution for Option with Stochastic Volatility with Applications to Bond and Currency Options,” Review of Financial Study 6, 337-343.
28. Hsieh, D. And L. Manas-Anton, 1988. “Empirical regularities in the Deutsche Mark Futures Options.” Advances in Futures and Options Research 3, 183-208
29. Hull, J. and A. White, 1987, “The Pricing of Options with Stochastic Volatilities,” Journal of Finance 42, 281-300.
30. Kou, S. G. 2002, “A Jump Diffusion Model for Option Pricing,” Management Science 48, 1086-1101.
31. Kou, S.G., H. Wang, 2004. “Double Exponential Jump-Diffusion Model.” Management Science 50, 1178-1192.
32. Lo, A. W., 1991. “Long-Term Memory in Stock Market Prices.” Econometrica, 59, 1279-1313.
33. Lo, A. W., A. C. MacKinlay, 1988. “Stock Market Prices Do Not Follow Random Walks: Evidence from A Simple Specification Test.” Review of Financial Studies 1, 41-66.
34. Longstaff, F., 1990, “Pricing Options with Extendible Maturities: Analysis and Applications.” Journal of Finance 45, 935-957
35. Margrabe,W.,1978. “The Value of an Option to Exchange One Asset for Another.” Journal of Finance 33, 177-86
36. Merton, R.C., 1976. “Option Pricing when Underlying Stock Returns are Discontinuous.” Journal of Financial Economics 3, 125-144.
37. Musiela, M., M. Rutkowski, 1998. “Martingale Methods in Financial Modeling.” Springer, New York.
38. Myers, S.C., 1977. “Determinants of Corporate Borrowing.” Journal of Financial Economics 5, 147–175.
39. Pindyck, R. S., 1988. “Irreversible Investment, Capacity Choice, and The Value of The Firm.” American Economic Review 79, 969-985.
40. Ramezani, C. and Y. Zeng, 2007. “Maximum Likelihood Estimation of the Double Exponential Jump-Diffusion Process.” Annals of Finance 3, 487-507
41. Randall, G., and S. Brown, 1999. “Homes for Street Homeless People: An Evaluation of The Rough Sleepers Initiative.” London: HMSO
42. Rubinstein M., 1994. “Implied Binomial Trees.” Journal of Finance 49, 771-818
43. Rubinstein, M., 1992. “Options for The Undecided”. In: Tompkins, R., From Black Scholes to Black Holes - New Frontiers in Options. Risk Publication, UK, 187-189.
44. Sepp A., 2004. “Analytical Pricing of Double-Barrier Options Under a Double-Exponential Jump Diffusion Process: Applications of Laplace Transform.” International Journal of Theoretical and Applied Finance 7,151-175
45. Stein, E. and J. Stein, 1991, “Stock Price Distributions with Stochastic Volatility,” Review of Financial Studies 4, 727-752.
46. Sundaresan, S. M., 2002, “Continuous-time Methods in Finance: A Review and An Assessment.” Journal of Finance 55,1569 -1622.
47. Trigeorgis, L., 1993. “The Nature of Option Interactions and The Valuation of Investments with Multiple Real Options.” Journal of Financial and Quantitative Analysis 28, 1-20.
48. Trigeorgis, L., 1996. “Real Options.” Cambridge.
49. Whaley, R.E., 1981. “On The Valuation of American Call Options on Stocks with Known Dividends.” Journal of Financial Economics 9, 207-211.
校內:2014-07-22公開