| 研究生: |
曾逸仁 Tseng, Yi-Jen |
|---|---|
| 論文名稱: |
台灣古蹟大木構造非破壞評估之研究 Nondestructive Evaluation of Wooden Structural Frames of Historical Buildings in Taiwan |
| 指導教授: |
徐明福
Hsu, Min-Fu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 288 |
| 中文關鍵詞: | 足尺構材 、阻抗圖譜 、超音波法 、鑽孔阻抗法 |
| 外文關鍵詞: | full-scale structural timber, ultrasonic wave method, drill resistance method, Resistograph |
| 相關次數: | 點閱:78 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在台灣,古蹟與歷史建築之日式、西式木屋架,及漢人傳統建築的大木構造系統,均是影響建築結構安全的主要構造,須採取適當的方式進行保存維護。其作為歷史證物的重要性,在實質上亦表現於大木構造的匠師工法,及建築構法、形制、材料、裝飾方面,特別是木構件上豐富的彩畫,展現了傳統藝匠的極至,為彌足珍貴的史料。然而,此些保存的標的卻常因木構件損壞而須更換木料重繪,導致失去了歷史與文化的傳承。關鍵之一,即在大木構造上,他們不僅是建築的結構、具藝術價值,也是古蹟建築生命能否延續的重要指標。
為保護這些重要文化資產,在進行維護與修復前,木構造的檢測是必要的程序。當釐清損壞範圍、程度後,方能正確掌握木構造的現況,提出合宜的修復方式與流程。其中,遵循保存原則與考量不破壞材料未來有效性的考量下,透過量化的「非破壞評估」(Nondestructive Evaluation,NDE)技術診斷大木構件、評估其安全,即能滿足此種需求。
本研究從古蹟與歷史建築大木構造的損壞現象、損壞類型、損壞部位,及常用的材質與構材尺寸等進行初步探討,並針對國內常用的幾種非破壞檢測方法回顧探討,掌握各種技術的有限性與其有效性。再試圖透過基礎的實驗操作,參酌科學儀器的實用性與便利性,建立基礎資料以達到量化評估木構造的需求。而此基礎研究成果再經綜合應用最佳的流程與評估方法,最終階段即發展至足尺構材的安全診斷。研究成果對古蹟之保存及修復工程具有實質上的效益。
在針對超音波檢測技術應用於台灣古蹟大木構件的適用性探討上,本研究透過模擬木構件損壞、無缺點小試材的抗彎試驗、不同檢測方式的比較、不同外在材質可能影響超音波速的情形、施加不同壓力於換能器上是否影響波速等議題進行試驗,以評估此技術的適用性與其合理的使用範圍。結果顯示,超音波技術可以有效評估古蹟用新料,然對於舊料的評估則不具可靠性。
在鑽孔阻抗法的探討上,本研究以此技術為主進行小試體之橫向抗壓試驗。透過不同鑽孔方向與不同材料、不同木理傾斜角度之十八組試體實施鑽孔阻抗非破壞檢測後,再進行橫向抗壓試驗;並另採一組試體進行抗彎試驗。以比較鑽孔阻抗值與木材機械性質間之關係,試圖作為材質評估及足尺構材試驗之基礎資料。研究結果顯示,鑽孔阻抗值與木材機械性質之橫向抗壓強度fc、橫向抗壓彈性模數Ec及抗彎強度fb間,部分組別均有中度至高度之相關性。而阻抗值與各組橫向抗壓強度、試材密度間以迴歸分析法進行探討,均能建立良好的預測模型。在45度徑向鑽孔阻抗值與抗彎彈性模數的分析上,如再加入超音波速參數採多元迴歸法分析,能得到最佳的解釋模型。
在足尺構材的非破壞評估探討上,本研究以直徑15 cm及18 cm之足尺構材新料共40支、及足尺構材廢棄舊料共34支進行鑽孔阻抗測試及抗彎試驗,以比較阻抗值與抗彎彈性模數之關係。結果顯示,採45度徑向的鑽孔阻抗法所獲得之阻抗值與足尺構材抗彎彈性模數間具有中度至高度的相關性,表示此技術可作為古蹟大木構造評估之良好方法,實驗數據亦可作為相關研究探討之基礎。
Wooden structural frames of historical buildings in Taiwan, such as those used in wood truss houses of Japanese and western styles and the traditional buildings of the Han people, are the main structures affecting the structural safety of the buildings. In order to maintain the historical importance of the buildings, it is therefore very important to use proper methods to maintain the structures for conservation. In addition, the styles of the master carpenters are substantially expressed in the design and construction of wooden frames, the architectural forms, and the materials and decorations used in the buildings. In particular, the color-rich paintings on the wooden structural components represent the excellence of the art of traditional craftsmen and artists and are very valuable historical masterpieces. However, these objects to be preserved often need to be repainted onto new wood materials due to the damage to the old wooden components, leading to the loss of historical and cultural treasures. One of the keys to this issue is the conservation of wooden structural frames. They are not merely principal structures but are also very valuable pieces of traditional art, and represent an index of the life of historical buildings.
To preserve such important cultural properties, an inspection of the wooden structural frames is required before conservation. Only when the damaged area and degree of destruction have been located and examined, and the condition of the wooden structural frames verified, can an appropriate procedure for conservation be proposed. Following preservation principles, the use of Nondestructive Evaluation (NDE) techniques can meet the demand for assessment of structural safety without damage to the materials, which are then allowed to maintain their integrity for the future.
This study first discusses the damage appearance, types and location, and the common materials and structure material dimensions used for the wooden structural components of historical buildings. Several common NDE techniques currently used in Taiwan are then reviewed, to form an appreciation of their limitation and validity. Furthermore, this study attempts to establish useful information for quantitative evaluation of the wooden structural frame via practical experiment using scientific devices and by comparison of their practicability and convenience. The results are then optimized and applied to the structural safety analysis of full-scale structural timber to generate useful procedures for the evaluation of preservation and conservation methods for historical buildings
For the application of the ultrasonic wave testing technique for examination of wooden structural frames, this study performed static bending testing on stimulated damaged specimens or small clear specimens. Other comparisons include the differences between different testing methods, the effect of the different outer materials coated on the wooden structural frames, and the application of different pressures on the transducers of the devices for a change of ultrasonic wave velocity, which are used to evaluate effective applications and their drawbacks. The results showed that ultrasonic wave technology can be effectively used in the evaluation of new materials, but it is unreliable for the old materials used in historical buildings.
For the drill resistance method, this study tested the compression perpendicular to the grain on small clear specimens. Using nondestructive inspection, a total of 18 groups of specimens with treatments of different drilling directions, different materials and grain angles of wood were tested to find their compression perpendicular to the grain. In addition, another group of specimens was used in static bending testing. The results provide a comparison of the relationships between drilling resistance values and mechanical properties, and the information can be useful for the evaluation of wood quality and testing of full-scale structural timber. The results also revealed that drilling resistance values and several mechanical properties of wood, such as crushing strength perpendicular to the grain (fc), modulus of elasticity perpendicular to the grain (Ec), and bending strength (fb), have a medium to high correlation in some groups. Regression analysis showed that between the drill resistance values and fc of the material the density prediction models can be established for the groups. An analysis of the relationship between the 45-degree radial drilling resistance value and the modulus of elasticity in static bending showed an optimal explanation model when the variable of ultrasonic wave velocity was analyzed with multiple regression analysis.
In the nondestructive evaluation of full-scale structural timber, this study applied the drill resistance and static bending tests with 40 new timbers of 15 and 18 cm in diameters and 34 used waste ones to compare the relationship between resistance values and the modulus of elasticity in static bending tests. The results showed that the 45-degree radial drilling resistance value and the modulus of elasticity in static bending of full-scale structural timber have a medium to high correlation, showing that this technique is an excellent method for the evaluation of the wooden structural frames of historical buildings. The experiment data from this study can also form the basis of relevant research on the conservation of traditional architecture.
參考文獻
中文
1. 王松永,2001,〈木材物理學〉。台北:國立編譯館。
2. 王松永,1983,〈商用木材〉。台北:中華民國林產事業協會。
3. 王松永、林振榮,2001,應用鑽孔抵抗技術評估台灣杉造林木之早晚材境界密度,〈台灣林業科學〉,16(3),pp. 197-200。台北:農委會林業試驗所。
4. 王承忠,2004,實驗室間比對的能力驗證及穩健統計技術:第二講—能力驗證計劃的運作和能力評價,〈物理檢驗—物理分冊〉,40(8),pp. 427-429。上海:上海材料研究所。
5. 矢內原忠雄,2003,〈日本帝國主義下之台灣〉(周憲文譯),台北:海峽學術出版社。
6. 田種玉,1995,〈日據時期台灣雨淋板建築歷程之探究〉。中壢:私立中原大學建築研究所碩士論文。
7. 台灣總督府,1899,(台南縣)知事官舍及附屬官舍新營工事一件書類,〈台灣總督府公文類纂〉,冊號9507(文號1)。南投:國史館台灣文獻館。
8. 台灣總督府營林局,1931,〈木材貿易表:臺灣總督府營林所編纂大正十三年以降〉,台灣總督府。
9. 沈學銘,1994,〈中國傳統建築腐蝕榫卯對木構架結構行為之探討〉。台中:國立中興大學土木研究所碩士論文。
10. 巫佳芸,2005,〈經防火、防腐處理之木材機械性能-以高壓注入工法探討之〉。台南:國立成功大學建築學系碩士論文。
11. 林仁政,2003,〈台灣傳統建築木構材之天候劣化調查與分析〉。台中:國立中興大學森林學系博士論文。
12. 林會承,1995,〈台灣傳統建築手冊—形式與作法篇〉。台北:藝術家出版社。
13. 林會承,2005,古蹟建築之特性,〈「古蹟修復工程工地主任培訓班」課程教材及題庫委外編撰第一階段初稿〉,內政部委託,成大建築系執行。
14. 明文書局,1986,〈中國古代建築史新編〉。台北:明文書局。
15. 邱皓政,2000,〈社會與行為科學的量化研究與統計分析:SPSS中文視窗版資料分析範例解析〉。台北:五南圖書。
16. 邱皓政,2006,〈量化研究法(二):統計原理與分析技術〉。台北:雙葉書廊。
17. 周憲文,1980,〈台灣經濟史〉。台北:台灣開明書店。
18. 姚鶴年(編),2001,〈台灣森林史料圖文彙編〉。台北:農委會、中華林學會。
19. 倪勝火,2001,〈全臺吳氏大宗祠木構件檢測報告〉(未出版)。台南:成功大學土木工程學系。
20. 胡宗雄,1999,〈日治時期台南市亭仔腳空間形成之研究〉。台南:國立成功大學建築學系碩士論文。
21. 徐明福、徐福全,1996,〈台南市第三級古蹟西華堂調查研究及修護計畫〉。台南:國立成功大學建築學系。
22. 徐明福、徐福全,1999,〈台南市第三級古蹟興濟宮與大觀音亭調查研究與修護計劃〉。台南:國立成功大學建築學系。
23. 徐明福、蔡明哲、陳啟仁,2002,〈彰化縣第一級古蹟鹿港龍山寺「山門、五門、戲臺」大木構件損壞調查報告書〉。台南:財團法人古都保存再生文教基金會。
24. 許妙戎,2001,〈超音波應用於木質板材性質之檢測〉。台中:國立中興大學森林學系碩士論文。
25. 梁思成,1985,〈新訂清式營造則例及算例〉。台北:明文書局
26. 陳勁豪,2002,〈萌蘗林與實生林杉木材質之研究〉。台北:國立台灣大學森林系碩士論文。
27. 陳順宇,2000,〈迴歸分析〉(第三版)。台北:華泰書局。
28. 陳順宇、鄭碧娥,1998,〈統計學〉(第三版)。台北:華泰書局。
29. 陳銘宏,2004,〈台灣傳統疊斗式大木構架現場損壞檢測之研究〉。台南:國立成功大學建築學系碩士論文。
30. 陳載永、陳合進,1998,老舊木質家具材料之強度性質,〈中興大學實驗林研究彙刊〉,20(2),pp. 41-50。台中:國立中興大學。
31. 陳載永、許妙戎、陳合進、徐俊雄,2001,鑽孔阻抗應用於木質板材性質之檢測,〈林產工業〉,20(3),pp. 189-194。嘉義:中華林產事業協會。
32. 陳載永、葉政翰、范振德,1996,國立中興大學舊行政大樓結構用木材使用半世紀後之性質檢測,〈中興大學實驗林研究彙刊〉,18(1),pp. 65-76。台中:國立中興大學。
33. 連橫,1981,台灣通史,(台灣史蹟叢書)。台北:幼獅文化事業。
34. 曾郁珊,2002,〈DmP非破壞檢測系統應用於古蹟及歷史建築木構件損壞評估適用性之基礎研究〉。台北:國立台灣大學森林學研究所碩士論文。
35. 曾逸仁,1997,〈台灣古蹟大木構件破壞類型及其非破壞檢測法之探索〉。台南:國立成功大學建築學系碩士論文。
36. 曾逸仁,2003,台灣傳統木竹構造建築震害之探討,〈文化與建築研究集刊〉,10,pp. 1-34。台南:台灣建築與文化資產出版社。
37. 曾逸仁、徐明福,1998,古蹟大木構件現存非破壞檢測法之比較研究,〈第十一屆建築研究成果發表會論文集〉。台北:中華民國建築學會。
38. 曾逸仁、徐明福、黃斌,2005,超音波法應用於台灣傳統大木構件非破壞檢測適用性之研究,〈建築學報〉,52,pp. 37-58。台北:中華民國建築學會。
39. 曾國恩、曾逸仁、陳銘宏,2003a,〈高雄縣縣定古蹟旗山天后宮木構件檢測工程報告書〉,高雄縣政府委託,頂響企業有限公司執行。
40. 曾國恩、曾逸仁、陳銘宏,2003b,旗山天后宮木構件非破壞性檢測,〈旗山天后宮生物危害防治講習會論文集〉,pp. 38-63。高雄:高雄縣政府文化局、頂響企業有限公司。
41. 張宗怡,2002,〈應用局部平滑方法分析樹輪阻抗圖譜之研究〉。台北:國立台灣大學森林學研究所碩士論文。
42. 莊世滋,1999,〈應力波及超音波法評估木材及不同撫育處理之立木材質研究〉。台北:國立台灣大學森林系博士論文。
43. 黃彥三、陳欣欣、張金成、漆陛忠,1993,非破壞試驗技術應用於原木材質評估之可行性研究,〈林業試驗所研究報告季刊〉,8(1),pp. 85-98。台北:林業試驗所。
44. 黃彥三、陳欣欣、張金成、何逸民,1997,超音波應用於木麻黃立木樹幹心腐之探測,〈中華林學季刊〉,30(4),pp. 445-450。台北:中華林學會。
45. 黃珮榛,2004,〈台南地區民宅穿鬪式架扇之研究〉。台南:國立成功大學建築學系碩士論文。
46. 黃斌、許茂雄、蔡明哲,2001,〈歷史建築震損及維護方式之研究(一)木竹構造〉。文建會委託研究,國立成功大學執行。
47. 歐陽志成、張文瑜、周瑞仁、胡健威、張宗怡,2005,阻抗圖儀之控制與訊號處理系統之開發,〈中華農學會報〉,6(5),pp. 100-105。台北:中華農學會。
48. 蔡如藩,1984,〈木材力學性質〉。台北:徐氏基金會。
49. 蔡育林,1997,〈台灣地區傳統建築木結構材質之調查研究〉。台中:國立中興大學森林學系碩士論文。
50. 蔡明哲,1997,非破壞性檢測法在木結構材維護上之適用性,〈木質建築物之居住性與維護管理研討會論文集〉。台北:中華民國木質構造建築協會。
51. 蔡明哲、徐明福,1998a,超音波檢測技術應用於台灣古蹟大木構件新料擇用之初探,〈建築學報〉,26,pp. 59-69。台北:中華民國建築學會。
52. 蔡明哲、徐明福,1998b,超音波檢測技術應用於古蹟大木構件損壞評估之探討,〈建築學報〉,27,pp. 45-55。台北:中華民國建築學會。
53. 閻嘉義、金文森、鄭振坤,1993,〈傳統建築木構架力學系統初步研究—榫頭行為〉。台北:行政院文化建設委員會。
54. 蕭錦綿、賓靜蓀,1999,阿里山森林輓歌,〈天下雜誌〉,217期,pp. 172-180。台北:天下雜誌社。
55. 藤島亥治郎,1993,〈台灣的建築〉(協和台灣叢刊37)。台北:台原出版社。
56. Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1997).〈應用線性迴歸模型〉(Applied linear statistical models)(劉應興譯)。台北:華泰書局。(原作1996出版)
日文
57. 山下香菜、長尾博文、加藤英雄、井道裕史,2006,穿孔抵抗によるニ材內密度分布の推定試み,〈森林總合研究所研究報告〉,26(1),pp. 61-68。
58. 平嶋義彥、杉原未奈、佐佐木康寿、安藤幸世、山崎真理子,2005,古材の強度特性(第3報):ケヤキおよびアカマツの静 的曲げ強度特性および衝擊曲げ強さ,〈木材学会誌〉,51(3),pp. 146-152。
59. 范島敏夫、上村武、鴛海四郎、矢野孝昭,1999,〈地震に強い木の軸組工法〉。東京:產調出版社。
60. 栗山俊一,1929,建物を白蟻の話,〈台灣建築會誌〉,1(3)。台北:台灣建築會。
61. 栗山俊一,1930,イヘシロアリの家屋侵害に就て,〈台灣建築會誌〉,2(4)。台北:台灣建築會。
62. 新井英次郎,1930,本島建築界に於ける木造建築を煉瓦建築(二),〈台灣建築會誌〉,2(4)、(5)。台北:台灣建築會。
英文
63. Agrawal, S. (2005). Nondestructive evaluation of wooden logs using ground penetrating radar. Master thesis, Department of Civil and Environmental Engineering, West Virginia University.
64. Anthony, R.W., & Pandey, A. K. (1996). Use of stress waves to evaluate timber pile length. In Sandoz, J. L., (Ed.), Proceedings of the 10th international symposium on nondestructive testing of wood (pp. 125-133). August 26-29, Lausanne, Switzerland.
65. Anthony, R.W., Pandey, A. K., & Arnette, C. G. (1996). Inspection and assessment of timber piles. In Natterer, J., & Sandoz, J.-L. (Eds.), Proceedings of 5th world conference on timber engineering (Vol. 1, pp. 432-439). August 17-20, Montreux, Switzerland.
66. Aydin, S., & Yardimci, M. Y. (2007). Mechanical properties of four timber species commonly used in Turkey. Turkish Journal of Engineering & Environmental Sciences, 31, 19-27.
67. Bethge, K., Mattheck, C., & Hunger, E. (1996). Equipment for detection and evaluation of incipient decay in trees. Arboricultural Journal, 20, 13-37.
68. Bertolini Cestari, C., Gori, R., & Bonafede, L. (1997). The use of nondestructive tests on historic timber structures. In Proc. of 5th international conference on structural studies, repairs and maintenance of historical buildings (pp. 69-82). June 25-27, San Sebastian, Spain. Southampton, UK: Computational Mechanics Publications.
69. Bertolini Cestari, C., Brunetti, M., Cavallero, P., & Macchioni, N. (1998). A nondestructive diagnostic method on ancient timber structures: Some practical application examples. In Natterer, J., & Sandoz, J.-L. (Eds.), Proceedings of 5th world conference on timber engineering (Vol. 1, pp. 456-463). August 17-20, Montreux, Switzerland.
70. Bertolini Cestari, & Lucchio, A. D. (2001). Interventions on historical building timber floors: Retractable –visible? Invasive – not visible? A case study. In Lourenço, P.B., & Roca, P. (Eds.), Proceedings of the 3rd International Seminar, historical constructions 2001: Possibilities of numerical and experimental techniques (pp. 837-846). November 7-9, Guimarães, University of Minho, Portugal.
71. Baldassino, N., Piazza, M., & Zanon, P. (1996). In situ evaluation of the mechanical properties of timber structural elements. In Sandoz, J. L., (Ed.), Proceedings of the 10th international symposium on nondestructive testing of wood (pp. 369-377). August 26-29, Lausanne, Switzerland.
72. Bethge, K., & Mattheck, C. (1994). Visual tree assessment and related testing methods. In Proceedings of the 9th international symposium on non-destructive testing of wood (pp. 176-182). September 22-24, 1993, Madison, WI: Forest Products Society.
73. Blass, H., & Görlacher, R. (2004). Compression perpendicular to the grain. In Proceedings of the 8th world conference on timber engineering, (Vol. II, pp. 435-440). June 14-17, Lahti, Finland.
74. Blomberg, J. (2006). Mechanical and Physical properties of semi-isostatically densified wood. Doctoral dissertation. Luleå University of Technology, Skellefteå, Sweden.
75. Bodig, J. (1963). The peculiarity of compression of conifers in radial direction. Forest Products Journal, 13, 438.
76. Bodig, J. (1965). The effect of anatomy on the initial stress-strain relationship in transverse compression. Forest Products Journal, 15(5), 197-202.
77. Bodig, J. (1969). Improved load-carrying capacity of wood in transverse compression. Forest Products Journal, 19(12), 39-44.
78. Bodig, J. (2000). The process of NDE research for wood and wood composites. In Proceedings of the 12th international symposium on nondestructive testing of wood ( pp. 7-22). September 13-16, University of Western Hungary, Sopron.
79. Bodig, J., & Jayne, B. A. (1982). Mechanics of wood and wood composites. NY: Van Nostrand Reinhold.
80. Bonamini, G., Noferi, M., & Togni, M. (2001). On-site grading of old timber members. In Cestari, C. B. (Ed.), Wooden handwork / Wooden carpentry: European restoration sites, Proceedings of Culture 2000 project: Italian action (pp. 205-210). Amsterdam: Elsevier.
81. Booker, R. E., Ridoutt, B. G., Wealleans, K. R., McConchie, D. L., & Ball, R. D. (2000). Evaluation of tools to measure sound velocity and stiffness of green radiata pine logs-wood. In Divos, F., (Ed.), Proceedings of the 12th international symposium on nondestructive testing of wood (pp. 223-231). September 13-15, University of Western Hungary, Sopron.
82. Breeze, J. Z., & Niberg, R. H. (1971). Predicting by sonic measurements the strength of logs and poles having internal decay. Forest Products Journal, 21(5), 39-43.
83. BSI. (1957). BS 373: Methods of testing small clear specimens. London: British Standards Institution.
84. BSI. (1994). BS ISO 5725-2: Accuracy (trueness and precision) of measurement methods and results-Part 2: Basic method for the determination of repeatability and reproducibility of standard measurement method. London: British Standards Institution.
85. Bucur, V. (1995). Acoustics of wood. Boca Raton, New York, London, Tokyo: CRC Press.
86. Bucur, V. (1999). Acoustics as a tool for the nondestructive testing of wood. In Proceedings of the International Symposium on NDT Contribution to the Infrastructure Safety Systems (pp. 75-78). November 22-26, Torres, RS, Brazil.
87. CEN. (1997). EN 1193: Timber Structures-Structural timber and glued laminated timber-Determination of shear strength and mechanical properties perpendicular to the grain. Office for Official Publications of the European Communities, Brussels, Belgium.
88. Ceraldi, C., Mormone, V., & Russo Ermolli, E. (2001). Resistographic inspection of ancient tomber structures for the evaluation of mechanical characteristics. Materials and Structures / Matérlaux et Constructions, 34, 59-64.
89. Chantra, G., & Rozenberg, P. (1997). Can drill resistance profiles (Resistograph) lead to winth-profile and within-ring density parameters in Douglas fir wood? In Proceedings of Timber management toward wood quality and end-product value, CTIA/IUFRO international wood quality workshop (pp. II 41-46). August 18-22, Québec City.
90. Costello, L. R., & Quarles, S. L. (1999). Detection of wood decay in blue gum and elm: An evaluation of the Resistograph® and the portable drill. Journal of Arboriculture, 25 (6), 311-318.
91. Croci, G.. (2000). The conservation and structural restoration of architectural heritage. Southampton, UK: WIT Press.
92. Divós, F., Németh, L., & Bejó, L. (1999). Evaluation of the wooden structure of a Baroque Palace in Pápa, Hungary. In Proceedings of the 11th International Symposium on Nondestructive Testing of Wood ( pp. 153-159). September 9-11, 1999, Madison, WI: Forest Products Society.
93. Divós, F., Dániel, I., & Bejó, L. (2001). Defect detection in timber by stress wave time and amplitude. The e-Journal of Nondestructive Testing, 6(3).
94. Dolwin, J. A., Lonsdale, D., & Barnett, J. (1999). Detection of decay in trees. Arboricultural Journal, 23 (2), 139-149.
95. Dwianto, W., Norimoto, M., Morooka, T., Tanaka, F., Inoue, M., & Liu, Y. (1998). Radial compression of sugi wood. Holz als- und Werkstoff, 56, 403-411.
96. Edmund, G., & Magdalena, M. (2000). Some remarks on gamma-densitometry of wood. In Divos, F., (Ed.), Proceedings of the 12th international symposium on nondestructive testing of wood (pp. 245-250). September 13-15, University of Western Hungary, Sopron.
97. Ellis, S., & Steiner, P. (2002). The behaviour of five wood species in compression. IAWA journal, 23(2), 201-211.
98. Emerson, R. E. (1999). Nondestructive testing of timber bridges. Doctoral dissertation, Civil and Environmental Engineering, Washington State University.
99. Ethington, R. L., Eskelsen, V., & Gupta, R. (1996). Relationship between compression strength perpendicular to grain and ring orientation. Forest Products Journal, 46(1), 84-86.
100. Gehri, E. (1997). Timber in compression perpendicular to the grain. In Proceedings of the 1997 International Conference of IUFRO S 5.02 Timber Engineering (pp. 335-374). June 16-17, Copenhagen, Denmark.
101. Gehri, E. (1998). Load introduction and load transfer perpendicular to grain. In Natterer, J., & Sandoz, J.-L. (Eds.), Proceedings of 5th world conference on timber engineering (Vol. 1, pp. 175-182). August 17-20, Montreux, Switzerland.
102. Gerhards, C. C. (1978). Effect of earlywood and latewood on stress wave measurement parallel to the grain. Wood Science, 11(2), 13-16.
103. Gibson, L. J., & Ashby, M. F. (1988). Cellular solids: structure and properties. Oxford, UK: Pergamon Press.
104. Gray, J. D. (2003). In situ determination of strength and stiffness of structural lumber and composite products. Master thesis, Davis College of Agriculture, Forestry, and Consumer Sciences, West Virginia University.
105. Hoffmeyer, P., Damkilde, L., & Pedersen, T. N. (2000). Structural timber and glulam in compression perpendicular to grain. Holz Holz als Roh- und Werkstoff, 58, 73-80.
106. Huang, C. L. (2000). Predicting lumber stiffness of standing trees. In Divos, F., (Ed.), Proceedings of the 12th international symposium on nondestructive testing of wood (pp. 173-179). September 13-15, University of Western Hungary, Sopron.
107. Jayne, B. A. (1959). Vibrational properties of wood. Forest Products Journal, 9(11), 413-416.
108. Kabir, M. F. Schmoldt, D. L., & Schafer, M. E. (2002). Time domain ultrasonic signal characterization for defects in thin unsurfaced hardwood lumber. Wood and Fiber Science, 34(1), 165-182.
109. Kappel, R. (1999). Field experience with tree decay detecting tools. In Lemattre, M., Lemattre, P., & Lemaire, F., Proceedings of the international symposium on urban tree health (pp. 221-227). September 22–26, 1997, Paris. ISHS, Acta Horticulturae, 496.
110. Kawamoto, S., & Williams, R. S. (2002). Acoustic emission and acousto-ultrasonic techniques for wood and wood-based composites: A review. Forest Products Laboratory General Technical Report, FPL-GTR-134, United States Department of Agriculture.
111. Kazemi Najaft, S., & Ebrahimi, G. (2005). Three methods for the prediction of longitudinal ultrasonic wave velocity in particle board and fiberboard. In Broker, F.-W., (Ed.), Proceedings of the 14th international symposium on nondestructive testing of wood (pp. 23-28). May 2-4, University of Applied Science, Eberswalde. Germany: Shaker Verlag.
112. Kelley, S. J., Loferski, J. R., Salenikovich, A., & Stern, E. G. (Eds.). (2000). Wood structures: A global forum on the treatment, conservation, and repair of cultural heritage. ASTM special technical publication, 1351. West Conshohocken, PA: ASTM.
113. Kennedy, R. W. (1968). Wood in transverse compression: Influence of some anatomical variables and density on behavior. Forest Products Journal, 18(3), 36-40.
114. Korin, U. (1990). Timber in compression perpendicular to the grain. In Proceedings of Meeting- International Council for Building Research Studies and Documentation Working Commission W18A Timber Structures, 23rd meeting (pp. 1-14). CIB-W18A, 23-6-1. September, 1990, Lisbon. Rotterdam : CIB.
115. Kruse, K., & Bröker, F. W. (1996). Non-contact method to determine ultrasonic velocity of wood based panels. In Sandoz, J. L., (Ed.), Proceedings of the 10th international symposium on nondestructive testing of wood (pp. 83-91). August 26-29, Lausanne, Switzerland.
116. Kunesh, R. H. (1968). Strength and elastic properties of wood in transverse compression. Forest Products Journal, 18(1), 65-72.
117. Lemaster, R. L., & Dornfeld, D. A. (1987). Preliminary investigation of the feasibility of using acousto-ultrasonics to measure defects in lumber. Journal of Acoustic Emission, 6(3), 157-165.
118. Leininger, T. D., Schmoldt, D. L., & Tainter, F. H. (2001). Using ultrasound to detect defects in trees: Current knowledge and future needs. In Proceedings of the first international precision forestry cooperative symposium (pp. 99-107). June 17-20, USDA Forest Service, Seattle, WA.
119. Lin, C. J., Wang, S. Y., Lin, F. C., & Chiu, C. M. (2003). Effect of moisture content on the drill resistance vaule in Taiwania plantation wood. Wood and Fiber Science, 35(2), 234-238.
120. Lsik, F., & Li, B. (2003). Rapid assessment of wood density of live trees using the Resistograph for selection in tree improvement programs. Canada Journal of Forest Research, 33, 2426-2453. Canada: NRC Research Press.
121. Macchioni, M. (1998). Inspection techniques for ancient wooden structures. In Roca P., et al.( Eds.), Proceedings of structural analysis of historical constructions II (pp. 149-162). CIMNE, Barcelona.
122. Madsen, B., Hooley, R. F., & Hall, C. P. (1982). A design method for bearing stresses in wood. Canadian Journal of Civil Engineering, 9(2), 338-349.
123. Mattheck, C., Bethge, K., & Albrecht, W. (1997). How to read the results of Resistograph M. Arboricultural Journal, 21 (4), 331-346.
124. Meinlschmidt, P. (2005). Thermographic detection of defects in wood and wood-based materials. In Broker, F.-W., (Ed.), Proceedings of the 14th international symposium on nondestructive testing of wood (pp. 41-45). May 2-4, University of Applied Science, Eberswalde. Germany: Shaker Verlag.
125. Miller, W. F., & Doolittle, J. A. (1989). The application of ground-penetrating radar to detection of internal defect in standing trees. In Proceedings of the 7th international symposium on nondestructive testing of wood (pp. 263-274). September 27-29, Madison, WI.
126. Moore, W. (1999). The combind use of the Resistograph and the Shigometer for the accurate mapping and diagnosis of the internal condition of woody support organs of trees. Arboricultural Journal, 23 (3), 273-287.
127. Müller, U., Gindl, W., & Teischinger, A. (2003). Effect of cell anatomy on the plastic and elastic behaviour of different wood species loaded perpendicular to grain. IAWA Journal, 24(2), 117-128.
128. Nairn, J. A. (2006). Numerical simulations of transverse compression and densificationin wood. Wood and Fiber Science, 38(4), 576-591.
129. Newman, A. (2001). Structural renovation of building: methods, details, and design samples. New York: McGraw-Hill.
130. Patton-Mallory, M., & De Groot, R. C. (1989). Detecting brown-rot decay in southern yellow pine by acousto-ultrasonics. In Proceedings of the 7th international symposium on nondestructive testing of wood (pp. 29-44). September 27-29, Madison, WI.
131. Pellerin R. F. & Ross, R. J. (Eds.). (2002). Nondestructive evaluation of wood, Madison, WI: Forest Products Society.
132. Philipp, H., & Gerold, M. (2000). Evaluation of internal log quality using X-ray and ultrasonic. In Divos, F., (Ed.), Proceedings of the 12th international symposium on nondestructive testing of wood (pp. 259-263). September 13-15, University of Western Hungary, Sopron.
133. Pletz, E., & Sales, A. (2003). Assessment of mechanical properties of wood using an ultrasonic technique. In Proceedings of the 13th international symposium on nondestructive testing of wood (pp. 75-78). August 19-21, 2002, University of California, CA. Madison, WI: Forest Products Society.
134. Pollock, D. G., Bender, Donald. A., & Soltis, L. A. (1996). Fasteners as damage indicators in timber structures. In Proceedings of the international wood engineering conference (Vol. 4, pp. 38-45). October 28-31, New Orleans. Baton Rouge, LA: Louisiana State University.
135. Rinn, F., Becker, B., & Kromer, B. (1992). Penetration-resistance measurements: Density profiles of conifers and deciduous trees. In Proceedings of tree rings and environment, the international dendrochronological symposium (Vol. 34, pp. 274-276). Septement 3-9, 1990, Ystad, South Sweden.
136. Rinn, F. (1994a). One minute pole inspection with RESISTOGRAPH micro drillings. In Proceedings of the international conference on wood poles and piles. March 21-23, Fort Collins, CO.
137. Rinn, F. (1994b). Resistograph inspection of construction timber, poles and trees. In Proceedings of Pacific timber engineering conference (pp. 469-478). July 11-15, 1994, G old Coast, Australia.
138. Rinn, F. (1994c). Catalogue of relative density profiles of trees, poles and timber derived from RESISTIGRAPH mico-drillings. In Proceedings of the 9th international symposium on non-destructive testing of wood (pp. 61-67). September 22-24, 1993, Madison, WI: Forest Products Society.
139. Rinn, F., Schweingruber, F. H., & Schär, E. (1994). RESISTOGRAPH drill resistance and high-resoluation X-ray density charts of different species of wood –a comparative evaluation. In Publications collected by Frank Rinn for the manufacturer of the Resistigraph. Germany: IML.
140. Rinn, F., Schweingruber, F. H., & Schär, E. (1996). RESISTOGRAPH and X-ray density charts of wood comparative evaluation of drill resistance profiles and X-ray density charts of different wood species. Holzforschung, 50 (4), 303-311.
141. Ross, P. (2002). Appraisal and repair of timber structures. London: Thomas Telford.
142. Ross, R. J. (1992). Nondestructive testing of wood. In Proceedings of the nondestructive evaluation of civil structures and materials (pp. 43-47). University of Colorado, Boulder, CO.
143. Ross, R. J., & Pellerin R. F. (1994). Nondestructive testing for assessing wood members in structures: A review, Forest Products Laboratory General Technical Report, FPL-GTR-70, United States Department of Agriculture.
144. Ross, R. J., Brashaw B. K., & Pellerin R. F. (1998). Nondestructive evaluation of wood. Forest Products Journal, 46(1), 14-19.
145. Ross, R. J., & Hunt, M. O. (1999). Stress wave timing nondestructive evaluation tools for inspecting historic structures: A guide for use and interpretation. Forest Products Laboratory General Technical Report, FPL-GTR-119, United States Department of Agriculture.
146. Ross, R. J., Pellerin R. F., Forsman, J. W., Erickson, J. R., & Lavinder, J. A., (2001). Relationship between stress wave transmission time and compressive properties of timbers removed from service. Forest Products Laboratory Research Note, FPL-RN-0280, United States Department of Agriculture.
147. Sabbe, A. (2001). The half-timbering architecture in Belgium: History and typology. In Cestari, C. B. (Ed.), Wooden handwork / Wooden carpentry: European restoration sites, Proceedings of Culture 2000 project: Italian action (pp. 131-147). Amsterdam: Elsevier.
148. Sandoz, J. L. (1989). Grading of construction timber by ultrasound. Wood Science and Technology, 23(1), 95-108.
149. Sandoz, J. L. (1994). Valorization of forest products as building materials using nondestructive testing. In Proceedings of the 9th International Symposium on Nondestructive Testing of Wood (pp. 103-109). September 22-24, 1993, Madison, WI: Forest Products Society.
150. Schmoldt, D. L., Duke, J. C., Morrone, M., Jr., & Jennings, C. M. (1994). Application of ultrasound nondestructive evaluation to grading pallet parts. In Proceedings of the 9th International Symposium on Nondestructive Testing of Wood (pp. 183-190). September 22-24, 1993, Madison, WI: Forest Products Society.
151. Sandoz, J. L. (1996). Ultrasonic solid wood evaluation in industrial applications. In Sandoz, J. L., (Ed.), Proceedings of the 10th international symposium on nondestructive testing of wood (pp. 147-153). August 26-29, Lausanne, Switzerland.
152. Sandoz, J. L., Benoit, Y., & Demay, L. (2000). Wood testing using acousto-ultrasonic. In Proceedings of the 6th world conference on timber engineering. July 31 - August 3, Whistler Resort, British Columbia, Canada.
153. Shaji, T., Somayaji, S., & Mathews, M. S. (2000). Ultrasonic pulse velocity technique for inspection and evaluation of timber. Journal of Materials in Civil Engineering, 12(2), 180-185.
154. Tabarsa, T., & Chui, Y. H. (2000). Stress-strain response of wood under radial compression: Part 1, Test method and influences of cellular properties. Wood and Fiber Science, 32, 144-152.
155. Tabarsa, T., & Chui, Y. H. (2001). Characterizing microscopic behaviour of wood under transverse compression : Part II, Effect of species and loading direction. Wood and Fiber Science, 33, 223-232.
156. Tanaka, T., & Divós, F. (1998). Nondestructive evaluation of residual bending strength of wood with artificial defects by stress wave. In Sandoz, J. L., (Ed.), Proceedings of the 10th international symposium on nondestructive testing of wood (pp. 83-91). August 26-29, Lausanne, Switzerland.
157. Thumm, A., Meder, R., & Marston, D. (2003). Stiffness prediction of structural lumber performance from green unsawn cants in a sawmill using NIR Spectroscopy. In Beall, F. C., (Ed.), Proceedings of the 13th international symposium on nondestructive testing of wood (pp. 117-121). August 19-21, 2002, University of California, CA. Madison, WI: Forest Products Society.
158. Tiitta, M. E., Beall, F. C., & Biernacki, J. M. (2001). Classification study for using acoustic-ultrasonics to detect internal decay in glulam beams. Wood Science and Technology, 35(1-2), 85-96.
159. Tseng, Y. J., Hsu, M. F., Tsai, M. J., & Chen, C. J. (2001). The comparison on conventional and modern examining methods of wooden structural components in listed historical buildings of Taiwan. In Proceedings of the 7th international conference on inspection, appraisal, repairs & maintenance of buildings & Structures (pp. 641-648). September11-13, Nottingham, UK.
160. Tseng, Y. J., & Hsu, M. F. (2003). The Evaluation of Wooden Components Using Nondestructive Technology. In Proceedings of the 8th International Conference on Inspection, Appraisal, Repairs & Maintenance of buildings & Structures. December 18-19, Singapore.
161. Tseng, Y. J., & Hsu, M. F. (2004). Application of Drill Resistance Method on Evaluating the Compressive Strength of Wooden Components. In Proceedings of the 8th World Conference on Timber Engineering (Vol. III, pp. 697-700). June14-17, Lahti, Finland.
162. Tucker, B. J. (2001). Ultrasonic plate wave in wood-based composite panels. Doctoral Dissertation, Civil and Environmental Engineering, Washington State University.
163. Vary, A. (1988). The acousto-ultrasonic approach. Edited. Acousto-ultrasonics : Theory and application (John C. Duke, Jr., Ed.). New York: Plenum Press.
164. Wang, J., Biernacki, J. M., & Lam, F. ( 2001). Nondestructive evaluation of veneer quality using acoustic wave measurements. Wood Science and Technology, 34(6), 505-516.
165. Wang, X. D., Mohammad, M., & Hu, L. J. (2005). Evaluation of density distribution in wood-based panels using X-ray scanning. In Broker, F.-W., (Ed.), Proceedings of the 14th international symposium on nondestructive testing of wood (pp. 31-38). May 2-4, University of Applied Science, Eberswalde. Germany: Shaker Verlag.
166. Wilcox, W. W. (1988). Detection of early stages of wood decay with ultrasonic pulse velocity. Forest Products Journal, 38(5), 68-73.
167. Winistorfer, P. M., Xu, W., & Wimmer, R. (1995). Application of a drill resistance technique for density profile measurement in wood composite panels. Forest Products Journal, 45(6), 90-94.
168. Yamamoto, K., Sulaiman, O., & Hsahim, R. (1998). Nondestructive detection of heart rot of Acacia mangium trees in Malaysia. Forest Products Journal, 48(3), 83-86.
169. Yeomans, D. T. (Ed.). (1999). The development of timber as a structural material (Studies in the History of Civil Engineering, Vol. 8). Hampshire, GB: Ashgate.
德文
170. Eckstein, D., & Saß, U. (1994). Bohrwiderstandsmessung an Laubbäumen und ihre holzanatomische. Holz als Roh- und Werkstoff, 52, 279-286.
171. Gruber, F. (2000). Messergebnisse zur Identifizierung von Buchenfarbkernen (Fagus sylvatica L.) mit den bohrmessgeräten Teredo und Resistograph 1410 sowie dem impulshammer-schallmessystem. Allgforst Jagdztd, 171 (7), 117-123.
172. Gruber, F. (2001a). Vergleichende Messergebnisse zur Identifizierung von Schadstellen im Fichtenholz (Picea abies L. KARST.) mit den Bohrmessgeräten Teredo, Resistograph 1410 und Impulshammer-Schallmesssystem: I. Schallmessungen und Bohrdiagramme an Intaktem. Allgforst Jagdztd, 171 (12), 223-227.
173. Gruber, F. (2001b). Vergleichende Messergebnisse zur Identifizierung von Schadstellen im fichtenholz (Picea abies L. KARST.) mit den Bohrmessgeräten Teredo, Resistograph 1410 und Impulshammer-Schallmessystem: II. Bohrdiagramme an rotfaulem Holz und Discussion. Allgforst Jagdztd, 172 (1), 1-7.
174. Niemz, P., Bues, C-T., & Herrmann, S. (2002). Die Eignung von Schallgeschwindigkeit und Bohrwiderstand zur Beurteilung von simulierten Defekten in Fichtenholz. Schweiz. Z. Forstwes, 153(6), 201-209.
175. Rinn, F. (1988). Eine neue methode zur Bestimmung von Baumringparametern. Diplomarbeit, Institut für Umweltphysik, Universität Heidelberg.
176. Rinn, F., Becker, B. & Kromer, B. (1990). Ein neues Verfahren zur direkten Messung der Holzdichte bei Laub- und Nadelhölzern. Dendrochronologia, 7, 159-168.
網路
177. ICOMOS. (1999). Principles for the preservation of historic timber structures. Adopted by ICOMOS at the 12th general assembly in Mexico, October 1999, from http://www.international.icomos.org/charters/wood_e.htm.