| 研究生: |
鄭庭舜 Cheng, Ting-Shun |
|---|---|
| 論文名稱: |
利用高分子薄膜分離晶片收集血漿之研究 Study of Blood Plasma Collection by Using Macromolecule Membrane Separation Chips |
| 指導教授: |
林裕城
Lin, Yu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 高分子薄膜材料 、血球過濾 、收集率 |
| 外文關鍵詞: | macromolecule material, whole blood filtration, plasma collection rate |
| 相關次數: | 點閱:54 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功利用高分子薄膜材料開發出血漿血球分離晶片,並結合微型幫浦來發展出快速血漿血球分離系統平台。研究方向是利用濾餅過濾(Dead-end filtration)來分離全血中的血球細胞,傳統的濾餅過濾是以壓力為驅動力,懸浮液流動方向與過濾薄膜表面垂直,懸浮液直接壓向薄膜面,通過薄膜而得到濾液,適合短時間操作以及小量批次處理。本實驗利用微機電製程技術(Micro electro mechanical systems, MEMS)製作出聚甲基丙烯酸甲酯(Polymethylmethacrylate, PMMA)分離晶片,最後結合高分子薄膜材料與PMMA分離晶片,即完成血漿血球分離晶片,再透過以頻率控制流量的微型幫浦來驅動血液過濾。本研究將對不同過濾薄膜面積(56.25 mm2、100 mm2及225 mm2)、不同血液檢體量(60 μL、80 μL、100 μL、120 μL、140 μL、160 μL及180 μL)及不同驅動頻率(10 Hz、20 Hz、30 Hz、40 Hz、50 Hz及60 Hz)去進行血漿血球分離的探討。由實驗結果發現,在過濾薄膜面積225 mm2、血液檢體量140 μL及驅動頻率40 Hz到60 Hz間有血漿收集率最佳可達到58%以上;在驅動頻率為10 Hz到50 Hz下對於血球產生較小的溶血現象(溶血率0.33%~0.38%),所以過濾面積、血液檢體量及驅動頻率對於血漿收集有影響性。最後,本血漿血球分離晶片透過雷射雕刻技術以及雙面黏性材料來完成可拋棄式血漿血球分離晶片,晶片尺寸為30 mm× 20 mm× 5 mm,結合可時間控制的微型幫浦,開發出快速血漿血球分離系統平台。本研究所開發出的快速血漿血球分離系統平台有別於一般傳統離心機,用於分離血球與血漿有著良好的過濾效果與血漿收集率,可在10分鐘內完成過濾,並具備不易溶血(溶血率<0.5%)、可攜帶、低成本(<6元/個)及容易操作等優點。
This study successfully develops the macromolecule membrane filtration chip to separate blood cells and plasma, and develops system which combine micropump with filtration chip. The filtration chip is based on dead-end filtration to separate blood cells in whole blood. The dead-end filtration used pressure as force to make the fluidic pass through the membrane and get the filtrate. The filtration chip uses the laser ablation of MEMS process to manufacture polymethylmethacrylate (PMMA) filtration chip. Then, combined macromolecule membrane with PMMA chip to complete whole blood filtration chip. This study was discussed the plasma collection under different membrane sizes(56.25 mm2, 100 mm2 and 225 mm2), different volume of whole blood(60 μL, 80 μL, 100 μL, 120 μL, 140 μL, 160 μL and 180 μL) and different frequencies(10 Hz, 20 Hz, 30 Hz, 40 Hz, 50 Hz and 60 Hz). When the membrane size is 225 mm2, volume of whole blood is 140 μL and frequencies are between 40 Hz and 60 Hz, the plasma collection rate is up to 58%. The frequency between 10 Hz and 50 Hz have small hemolysis(hemolysis rate is between 0.33% and 0.38%). Finally, this study develops the rapid separation system which combined time-controlled micropump and disposable filtration chip was made by laser ablation and double-side material, the chip size is 30 mm× 20 mm× 5 mm. This study has better effect on blood cells and plasma separation than other experiment results, and it can rapidly finish separation in 10 minutes, and avoid hemolysis.
參考文獻
[1] J. B. Lee, J. English, C. H. Ahn, and M. G. Allen, “Planarization techniques for vertically integrated metallic MEMS on silicon foundry circuits,” Journal of Micromechanics and Microengineering, vol. 7, pp. 44-54, 1997.
[2] M. Yano, F. Yamagishi, and T. Tsuda, “Optical MEMS for photonic switching-compact and stable optical crossconnect switches for simple, fast, and flexible wavelength applications in recent photonic networks,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, pp. 383-394, 2005.
[3] C. L. Goldsmith, Z. M. Yao, S. Eshelman, and D. Denniston, “Performance of low-loss RF MEMS capacitive switches,” IEEE Microwave and Guided Wave Letters, vol. 8, pp. 269-271, 1998.
[4] A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. W. Li, M. J. Cima, and R. Langer, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proceedings of the IEEE, vol. 92, pp. 6-21, 2004.
[5] 黃淑美、陳明宏,怎樣才是適合應用於臨床檢驗的良好血液檢體.中華民國醫檢會報,第41-44頁,西元2004年。
[6] M. Heins, W. Heil and W. Withold,“Storage of serum or whole blood sample? Effect of time and temperature on 22 serum analytes,”European Journal of Clinical Chemistry and Clinical Biochemistry, vol. 33, pp. 231-238, 1995.
[7] A. Kallner,“Preanalytical procedures in the measurement of ionized calcium in serum and plasma,”European Journal of Clinical Chemistry and Clinical Biochemistry, vol. 34, pp. 53-58, 1996.
[8] R. Astles, C. P. Williams and F. Sedor,“Stability of plasma lactate in vitro in the presence of antiglycolytic agents,”Clinical Chemistry, vol. 40, pp. 1327-1330, 1994.
[9] P. Hernández, L. Cortina, H. Artaza, N. Pol, R. M. Lam, E. Dorticós, C. Macías, C. Hernández, L. del Vall, A. Blanco, A. Martínez, and F. Díaz, “Autologous bone-marrow mononuclear cell implantation in patients with severe lower limb ischaemia: A comparison of using blood cell separator and Ficoll density gradient centrifugation,” Atherosclerosis, vol. 194, pp. 52-56, 2007.
[10] A. Timothy Crowley and Vincent Pizziconi,“Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications,”Lab on a Chip, vol. 5, pp. 922-929, 2005.
[11] K. Seiler, D.J. Harrison and A. Manz, “Planar chips technology for miniaturization and integration of separation techniques into monition systems,” Journal of Chromatography, vol. 593, pp. 253-258, 1992.
[12] Y.N. Xia and G.M. Whitesides, “Soft lithography,” Angewandte Chemie-International Edition, vol. 37, pp. 551-575, 1998.
[13] D. Snakenborg, H. Klank and J.P. Kutter, “Microstructure fabrication with a CO2 laser system,” Journal of Micromechanics and Microengineering, vol. 14, pp. 182-189, 2004.
[14] K.S. Huang, T.H. Lai and Y.C. Lin,“Manipulating the Generation of Ca-alginate Microspheres using Microfluidic Channels as a Carrier of Gold Nanoparticles,” Lab on a Chip, vol. 6, pp. 954-957, 2006.
[15] K.S. Huang, T.H. Lai and Y.C. Lin, “Using a Microfluidic Chip and Internal Gelation Reaction for Monodisperse Calcium Alginate Microparticles Generation,” Frontiers in Bioscience, vol. 12, pp. 3061-3067, 2006.
[16] L. Martynova, L.E. Locascio, M. Gaitan, G.W. Kramer, R.G. Christensen and W.A. MacCrehan, “Fabrication of plastic microfluid channels by imprinting methods,” Analytical Chemistry, vol. 69, pp. 4783-4789, 1997.
[17] H. Becker and U. Heim, “Polymer hot embossing with silicon master structures,” Sensors and Materials, vol. 11, pp. 297-304, 1999.
[18] M. Heckele, W. Bacher and K.D. Muller, “Hot embossing - The molding technique for plastic microstructures,”Microsystem Technologies, vol. 4, pp. 122-124, 1998.
[19] H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sensors and Actuators A: Physical, vol. 83, pp. 130-135, 2000.
[20] R.M. McCormick, R.J. Nelson, M.G. AlonsoAmigo, J. Benvegnu, and H.H. Hooper, “Microchannel electrophoretic separations of DNA in injection-molded plastic substrates,” Analytical Chemistry, vol. 69, pp. 2626-2630, 1997.
[21] H. Arjomandi, S. Barcelona, S. Gallocher and M. Vallejo, “Biofluid dynamics of the human circulatory system,” Congress on Biofluid Dynamics of Human Body Systems at Biomedical Engineering, 2003.
[22] S. Metz, C. Trautmann, A. Bertsch, and P. Renaud, “Flexible microchannels with integrated nanoporous membranes for filtration and separation of moleculles and particles,” Proc. IEEE 17th International MEMS Conference (IEEE MEMS 2004), pp. 81-84, 2002.
[23] X. Chen, D.F. Cui, C.C. Liu and H. Li, “Microfluidic chip for blood cell separation and collection based on crossflow filtration,” Sensors and Actuators B: Chemical, vol. 130, pp. 216-221, 2008.
[24] C. Blattert, R. Jurischka, I. Tahhan, A. Schoth, P. Kerth, and W. Menz, “Separation of blood in microchannel bends,” Proceedings of the 26th Annual International Conference of the IEEE EMBS, CA, USA, 2004.
[25] M. J. Madou, L. J. Lee, S. Daunert, S. Lai, and C. H. Shih, “Design and fabrication of CD-like microfluidic platforms for diagnostic: microfluidic functions,” Biomedical Microdevices, vol. 3, pp. 245-254, 2001.
[26] M.H. Moon, S.G. Yang, J.Y. Lee, and S. Lee, “Combination of gravitational SPLITT fractionation and field-flow fractionation for size-sorting and characterization of sea sediment,” Analytical and Bioanalytical Chemistry, vol. 381, pp. 1299-1304, 2005.
[27] T.S. Leu and Z.F. Liao, “Separation plasma and blood cells by dielectrophoresis in microfluidic chip,” International Journal of Modern Physics: Conference Series, vol. 19, pp.185-189, 2012.
[28] K. Aran, A. Fok, L.A. Sasso, N. Kamdar, Y. Guan, Q. Sun, A. Ündar and J.D. Zahn,“Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery,” Lab on a Chip, vol. 11, pp. 2858-2868, 2011.
[29] A. Nabatiyan, Z.A. Parpia, R. Elghanian and D.M. Kelso,“Membrane-based plasma collection device for point-of-care diagnosis of HIV,” Journal of Virological Methods, vol. 173, pp. 37-42, 2011.
[30] Kwang Hyo Chung, Yo Han Choi, Jong-Heon Yang, Chan Woo Park, Wan-Joong Kim, Chil Seong Ah and Gun Yong Sung, “Magnetically-actuated blood filter unit attachable to pre-made biochips,” Lab on a Chip, vol. 12, pp.3272-3276, 2012.
[31] W.J. Webe, Jr. and E.J. LeBoeuf, “ Processes for advanced treatment of water,” Water Science and Technology, vol. 40, No. 4-5, pp. 11-19, 1999.
[32] 盧文章、楊子岳,薄膜程序回收石化產業放流水之應用,環保月刊,七月號(第一期廢水專輯),第195-205 頁,西元2001年。
[33] http://www.pall.com/
[34] C. Piotr, L. Francisco and G. Carme, “Membrane fouling during microfiltraion of fermented beverages,” Journal of Membrane Science, vol. 166, No.2, pp. 199-212, 2000.
[35] D.J. Chang and S.J. Huang, “Unsteady-state permeate flux of crossflow microfiltration,” Separation Science Technology, vol. 29, No.12, pp. 1593-1608, 1994.
[36] S. Elmaleh, L. Vera, R. Villarroel-Lopez, L. Adbelmoumni, N. Ghaffor and S. Delgado, “Dimensional analysis of steady state flux for microfiltration and ultrafiltration membranes,” Journal of Membrane Science, vol. 139, pp. 37-45, 1998.
[37] E.L. Brainerd, “Caught in the crossflow,” Nature, vol. 412, pp. 387-388, 2001.
[38] http://www.memos-filtration.de/cms/en/crossflow.php
[39] T. Nomura, S. Nakao, S. Nomura,“Influent of The Temperature of Feed on Ultrafiltration,” International Chemical Engineering, vol. 29, pp. 811-817, 1989.
[40] V. Chen, A.G. Fane, S. Madaeni and I.G. Wenten,“Particle deposition during membrane filtration of colloids: transition between concentration polarization and cake formation,” Journal of Membrane Science, vol. 125, pp. 109-122, 1997.
[41] 廢水薄膜處理技術應用與推廣手冊,經濟部工業局,第15-90頁,西元2000年。
[42] B.H. Chiang and Munir Cheryan,“Modelling of hollow-fibre ultrafiltration of skimmilk under mass-transfer limiting conditions,” Journal of Food Engineering, vol. 6, pp. 241-255, 2004.
[43] http://www.microjet.com.tw/en/
[44] Matthew H. Smith, “Optimum wavelength selection for retinal vessel oximetry,” Applied Optics, vol. 38, pp.258-267, 1999.
[45] 呂維明,過濾數據之動態解析,台大工程學刊,第八十四期二月號,第3-19頁,西元2002年。
[46] A.M. Simundic, Elizabeta Topic, Nora Nikolac and Giuseppe Lippi, “Hemolysis detection and management of hemolyzed specimens,” Biochemia Medica, vol. 20, pp.154-159, 2010.
校內:2023-09-03公開