簡易檢索 / 詳目顯示

研究生: 朱証裕
Chu, Cheng-Yu
論文名稱: 發展一撓性仿人腕驅動器於親和人機互動
Development of a Compliant Humanoid Wrist Actuator for Human-Friendly Interaction
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 373
中文關鍵詞: 仿人機械臂腕驅動器球面並聯機構撓性元件設計撓性機構
外文關鍵詞: humanoid robot arm, wrist actuator, spherical parallel mechanism, compliant component design, compliant mechanism
相關次數: 點閱:90下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文發展一撓性仿人腕驅動器,設計目標除了有外形仿人與兩軸角位移範圍仿人等常見仿人目標,還加上總質量與體積仿人、兩軸角速度與扭矩仿人,以及串聯彈性致動。多項仿人目標使仿人腕驅動器不只能作出近於人類手腕的動作,還能執行負載較高,但仍為人類手腕作得來的工作。
    腕驅動器質量仿人時,不會因重量過重,而占去太多的肩與肘驅動器負載。結合勁度已知的撓性元件與位移感測器,可感測腕驅動器的力量與位移;結合位移與力量分析,可控制腕驅動器的姿態與輸出扭矩;串聯撓性元件與致動器,可實現串聯彈性致動,以提供高準度的力量控制,確保腕驅動器與人類互動的親和性。
    本設計由三個連桿機構組成,透過兩組含有致動器的撓性機構,將兩方向運動與力量傳遞至兩自由度球面並聯機構,再由球面機構的端效器輸出兩軸角位移與扭矩。連桿機構較容易輕量化;致動器遠離狹小的手腕空間而位於設計空間較大的前臂,故可採用尺寸較大(同時力量也較大)的規格;位於手腕空間的球面機構則因設計空間內無致動器,而可採用較厚實的桿件設計(同時提高強度)。所以本設計可在外形仿人與零件有足夠強度的同時,還能有仿人的輸出扭矩與機構重量,而後兩者為常見的關節驅動器難以同時達成之目標。
    本設計不但適合在人類的日常生活環境中,執行人類手腕作得到的工作,或與人類互動。由於本設計額外具有質心位置仿人、轉動慣量與致動形式仿人之特性。因此,本撓性腕驅動器若用於仿人機械臂,其靜態與動態表現也相當接近人類手腕與前臂。
    為了瞭解腕驅動器性能,並與人體數據比較、改善或選用較佳的機構設計方案、提供參考於姿態與力量控制,及確保撓性腕驅動器在高負荷下仍有足夠強度。本文對腕驅動器進行位移、速度、力量、撓性元件挫曲、端效器旋轉勁度、接頭力以及桿件應力分析,並加工出數個腕驅動器實體進行實驗與控制,期望本撓性腕驅動器能真正應用於相關領域中。

    Base on the common location of actuators, and the requirement of humanoid appearance. In common humanoid robot arms, the output torques of wrist actuator are often much smaller than elbow and shoulder actuator. Compared to human wrist and forearm, the output torques and weight of humanoid wrist actuator are often much smaller and heavier, respectively. Therefore, we attempt to develop a compliant humanoid wrist actuator. Our goals not only contain humanoid appearance and rotational range in pitch (flexion- extension) and yaw (ulnar-radial deviation) direction, which are similar to common humanoid wrist actuators, but also contain humanoid mass, volume, angular velocity and torque in pitch and yaw direction. In addition, to achieve force sensing and to increase human safety, series elastic actuation is also one of our design goals. Therefore, our design can not only perform the high-loaded tasks in human wrist capability, but also improve the safety of interactive object (possibly human) and actuators.
    By reviewing the literatures which are related to anthropometry (about wrist and forearm), the wrist actuator of humanoid robot arm and spherical parallel mechanism, we establish various design considerations, and improve or choose the better design from the feasible results. To establish design considerations, design compliant components, compare our design with human body, provide references for position and force control, and verify the strength of our design under the high-loaded tasks. We perform a series of analysis for displacement, velocity, force, compliant structure deflection, rotational stiffness, joint force, and structure stress. Finally, several prototypes of compliant humanoid wrist actuator are built for control and measurement experiments.

    摘要 I 英文延伸摘要 III 誌謝 IX 目錄 XI 表目錄 XX 圖目錄 XXVII 符號說明 XXXVII 第一章 緒論 1 1.1 背景介紹 1 1.2 文獻回顧 2 1.2.1 人體手腕與前臂測量數據 3 1.2.2 仿人機械臂 6 1.2.3 球面並聯機構 9 1.2.4 過去實驗室同學的研究成果 13 1.3 研究動機與目標 15 1.3.1 仿人機械臂與人體數據的比較 15 1.3.2 仿人腕驅動器設計目標 17 1.4 撓性腕機構的設計流程 20 1.5 論文架構 22 第二章 剛性腕機構設計概念 25 2.1 前言 25 2.2 致動形式選用 25 2.3 球面並聯機構選用 27 2.3.1 球面並聯機構設計考量 27 2.3.2 球面並聯機構篩選 33 2.3.3 運動分析相關定義 34 2.3.4 候選機構位移分析 37 2.3.5 候選機構力量分析 42 2.3.6 候選機構奇異性分析 45 2.3.7 候選機構分析結果比較 47 2.3.8 球面並聯機構選出 60 2.4 致動機構構成 62 2.4.1 致動機構設計考量 63 2.4.2 致動機構的中性姿態構形 64 2.4.3 致動機構選用 65 2.4.4 致動機構運動分析 67 2.4.5 致動機構力量分析 71 2.5 剛性腕機構組成 73 2.5.1 致動器選用 74 2.5.2 腕機構其餘參數決定 76 2.5.3 剛性腕機構相關定義 78 2.5.4 剛性腕機構其餘表現推導 80 2.5.5 剛性腕機構分析結果 83 2.6 本章小結 94 第三章 撓性元件設計概念 99 3.1 前言 99 3.2 耦桿彈簧的勁度規劃 100 3.3 現成品與設計目標之契合性 104 3.4 耦桿彈簧初步設計 105 3.4.1 分析方法 105 3.4.2 設計區間劃分 111 3.4.3 外形設計考量 113 3.4.4 初步設計成果 114 3.5 靜態結構分析 117 3.5.1 基礎設定 117 3.5.2 分析設定與結果 120 3.6 線性挫曲分析 123 3.6.1 功能簡介 124 3.6.2 線性與非線性理論的差異 125 3.6.3 兩種設計之挫曲分析結果 129 3.7 改善耦桿彈簧的初步設計 130 3.7.1 影響挫曲表現的因素 130 3.7.2 變更耦桿彈簧的入平面方向 133 3.7.3 變更耦桿彈簧的開口方向 137 3.8 撓性耦桿與撓性腕機構之設計 141 3.9 本章小結 142 第四章 撓性腕機構分析與剛性腕機構驗證 145 4.1 前言 145 4.1.1 剛性腕機構的演變 145 4.1.2 本章流程 147 4.2 撓性與剛性腕機構的表現差異 149 4.2.1 撓性致動機構的運動與力量分析 150 4.2.2 可用來觀察差異的機構性質 154 4.2.3 腕機構分析的相關定義 155 4.2.4 撓性與剛性腕機構的順向位移差異 156 4.2.5 撓性與剛性腕機構的順向力量差異 159 4.3 撓性腕機構的勁度分析 163 4.3.1 勁度分析的動機與應用 164 4.3.2 勁度分析的預先介紹 166 4.3.3 傾俯曲柄的勁度分析 167 4.3.4 偏擺曲柄的勁度分析 175 4.3.5 端效器的傾俯勁度分析(旋轉θp時θy不變) 178 4.3.6 端效器的偏擺勁度分析(旋轉θy時θp不變) 185 4.3.7 端效器的傾俯勁度分析(旋轉θp時θy可動) 192 4.3.8 端效器的偏擺勁度分析(旋轉θy時θp可動) 197 4.3.9 平衡姿態與力量控制分析 199 4.3.10 自然頻率分析 206 4.3.11 勁度分析的定義整理 209 4.4 撓性腕機構的自由邊界分析 212 4.4.1 致動器的自由邊界 213 4.4.2 端效器的自由邊界 214 4.4.3 致動器主動移動的表現 215 4.4.4 端效器被動移動的表現 218 4.4.5 撓性腕機構有無考慮自由邊界的差異 220 4.4.6 自由邊界的其它用途 222 4.5 剛性腕機構的靜力分析 224 4.5.1 平面靜力分析的特性 225 4.5.2 空間靜力分析的要求 227 4.5.3 空間靜力分析的問題與處理方式 230 4.5.4 靜力分析的相關定義 235 4.5.5 靜力分析的結果整理 237 4.5.6 以剛體動力分析來驗證靜力分析的結果 243 4.5.7 靜力分析的解析結果 250 4.5.8 靜力分析與剛性腕機構的零件選用 251 4.6 剛性腕機構的應力分析 252 4.6.1 以插銷與銷孔構成旋轉接頭 252 4.6.2 應力分析的基本設定 253 4.6.3 兩階段應力分析 256 4.6.4 應力分析的結果整理 257 4.7 本章小結 261 第五章 剛性與撓性腕機構的發展與實驗 267 5.1 前言 267 5.2 腕機構的發展概況 267 5.2.1 設計A的發展概況 267 5.2.2 設計B的發展概況 270 5.2.3 撓性耦桿的發展概況 275 5.2.4 設計D的發展概況 281 5.3 腕機構的相關實驗 285 5.3.1 剛性腕機構的扭矩測量 285 5.3.2 撓性耦桿的勁度測量 291 5.4 本章小結 293 第六章 結論與未來工作 295 6.1 結論 295 6.2 未來工作 297 6.2.1 進階研究 297 6.2.2 延伸研究 301 參考文獻 307 附錄A 位移參數軌跡圖與腕機構姿態對照 315 A.1 附錄介紹 315 A.2 與剛性腕機構有關的軌跡圖對照 316 A.3 與撓性腕機構有關的軌跡圖對照 317 A.3.1 撓性傾俯機構 317 A.3.2 撓性偏擺機構 318 附錄B 剛性腕機構的靜力分析詳細內容 319 B.1 具有靜力平衡條件的副程式 319 B.1.1 桿件靜力平衡 319 B.1.2 接頭靜力平衡-被動旋轉接頭 321 B.1.3 接頭靜力平衡-主動棱柱接頭 323 B.2 桿件靜力平衡所對應的矩陣方程式 323 B.3 接頭靜力平衡所對應的矩陣方程式 329 B.4 設計B與C的力量索引值 332 B.5 設計B與C的假設條件所對應的矩陣方程式 335 B.6 設計B與C的已知條件所對應的矩陣方程式 336 B.7 設計B與C的靜力分析方法 338 B.8 接頭的軸向力、軸向力矩、徑向力與徑向力矩定義 341 B.9 設計B的計算結果 342 B.9.1 Fp = 222 N, Fy = 222 N的計算結果 342 B.9.2 Fp = 222 N, Fy = −222 N的計算結果 343 B.10 設計C的計算結果 344 B.10.1 Fp = 222 N, Fy = 222 N的計算結果 344 B.10.2 Fp = 222 N, Fy = −222 N的計算結果 347 B.11 本章小結 347 附錄C 剛體動力與靜力分析的差異整理 349 C.1 附錄介紹 349 C.2剛體動力分析的設定條件接近剛體靜力分析 351 C.2.1 設計B在Fp = 222 N, Fy = 222 N的比較結果 351 C.2.2 設計B在Fp = 222 N, Fy = −222 N的比較結果 352 C.2.3 設計C在Fp = 222 N, Fy = 222 N的比較結果 353 C.2.4 設計C在Fp = 222 N, Fy = −222 N的比較結果 354 C.3 剛體動力分析的設定條件接近實際操作 355 C.3.1 設計B在Fp = 222 N, Fy = 222 N的比較結果 355 C.3.2 設計B在Fp = 222 N, Fy = −222 N的比較結果 356 C.3.3 設計C在Fp = 222 N, Fy = 222 N的比較結果 357 C.3.4 設計C在Fp = 222 N, Fy = −222 N的比較結果 358 C.4 本章小結 359 附錄D 應力分析結果 361 D.1 連接面不可變形、開啟大撓曲選項、連續姿態 361 D.2 連接面可變形、關閉大撓曲選項、五個指定姿態 362 D.3 本章小結 370 自述 371 著作權 373

    [1] ABB, “IRB 6650S”. [Online]. Available: http://www05.abb.com/global/scot/scot241.nsf/veritydisplay/8d08a5207ce8fa5d4825749b002b767f/$file/IRB%206650S_C.pdf
    [2] T. Asfour, P. Azad, N. Vahrenkamp, K. Regenstein, A. Bierbaum, K. Welke, and R. Dillmann, 2008, “Toward Humanoid Manipulation in Human-Centred Environments,” Robotics and Autonomous Systems, 56(1), pp. 54-65.
    [3] C. -H. King, T. L. Chen, A. Jain, and C. C. Kemp, 2010, “Towards an Assistive Robot that Autonomously Performs Bed Baths for Patient Hygiene,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, pp. 18-22.
    [4] T. Mukai, S. Hirano, H. Nakashima, Y. Kato, Y. Sakaida, S. Guo, and S. Hosoe, 2010, “Development of a Nursing-Care Assistant Robot RIBA That Can Lift a Human in Its Arms,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, pp. 18-22.
    [5] DEKA, “The DEKA Arm”. [Online]. Available: http://www.dekaresearch.com/deka_arm.shtml
    [6] 王明揚、王茂駿、黃雪玲、游志雲、李永輝、何明泉與石裕川,中華民國八十五年,「勞工靜態與動態人體計測資料庫之測量(II)」,勞動部勞動及職業安全衛生研究所, IOSH85-H121。
    [7] 游志雲與陳志勇,中華民國八十七年,「重覆性傷害預防對策-現場評估與手部施力基礎資料之建立(II)」,勞動部勞動及職業安全衛生研究所,IOSH87-H124。
    [8] 鄭誠功,中華民國八十六年,「生物力學模式相關參數值研究—骨骼肌肉系統生理計測值建立(一)」,勞動部勞動及職業安全衛生研究所,IOSH86-H122。
    [9] E. Churchill, L. L. Laubach, J. T. McConville, and I. Tebbetts, 1978, “Anthropometric Source Book (Volume 1: Anthropometry for Designers),” National Aeronautical and Space Administration, Reference Publication 1024.
    [10] I. Arvidsson, I. Åkesson, and G. Å. Hansson, 2003, “Wrist Movements Among Females in a Repetitive, Non-Forceful Work,” Applied Ergonomics, 34(4), pp. 309-316.
    [11] J. L. Morse, M. C. Jung, G. R. Bashford, and M. S. Hallbeck, 2006, “Maximal Dynamic Grip Force and Wrist Torque: The Effects of Gender, Exertion Direction, Angular Velocity, and Wrist Angle,” Applied Ergonomics, 37(6), pp. 737-742.
    [12] S. H. Snook, D. R. Vaillancourt, V. M. Ciriello, and B. S. Webster, 1997, “Maximum Acceptable Forces for Repetitive Ulnar Deviation of the Wrist,” American Industrial Hygiene Association Journal, 58(7), pp. 509-517.
    [13] R. F. Chandler, C. E. Clauser, J. T. McConville, H. M. Reynolds, and J. W. Young, 1975, “Investigation of Inertial Properties of the Human Body,” Air Force Aerospace Medical Research Lab Wright-Patterson AFB OH, No. AMRL-TR-74-137.
    [14] G. Brigstocke, A. Hearnden, C. A. Holt, and G. Whatling, 2012, “The Functional Range of Movement of the Human Wrist,” Journal of Hand Surgery (European Volume).
    [15] Z. M. Li, L. Kuxhaus, J. A. Fisk, and T. H. Christophel, 2005, “Coupling Between Wrist Flexion-Extension and Radial-Ulnar Deviation,” Clinical Biomechanics, 20(2), pp. 177-183.
    [16] M. S. Hallbeck, 1994, “Flexion and Extension Forces Generated by Wrist-Dedicated Muscles Over the Range of Motion,” Applied Ergonomics, 25(6), pp. 379-385.
    [17] Elumotion, “Elumotion RT2-Arm”. [Online]. Available: http://www.elumotion.com/rt2arm.html
    [18] Meka, “A2 Compliant Arm”. [Online]. Available: http://mekabot.com/products/compliant-arm/
    [19] B. Tondu, S. Ippolito, J. Guiochet, and A. Daidie, 2005, “A Seven-Degrees-of- Freedom Robot-Arm Driven by Pneumatic Artificial Muscles for Humanoid Robots,” The International Journal of Robotics Research, 24(4), pp. 257-274.
    [20] G. Hirzinger, N. Sporer, A. Albu-Schäffer, M. Hähnle, R. Krenn, A. Pascucci, and M. Schedl, 2002, “DLR's Torque-Controlled Light Weight Robot III—Are We Reaching the Technological Limits Now?,” IEEE International Conference on Robotics and Automation, Washington, D. C, Vol. 2, pp. 1710-1716.
    [21] DLR Robotics and Mechatronics Center, “Mobile Humanoid Rollin Justin”. [Online]. Available: http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-5471/
    [22] M. Quigley, A. Asbeck, and A. Ng, 2011, “A Low-Cost Compliant 7-Dof Robotic Manipulator,” IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 6051-6058.
    [23] M. Grebenstein, A. Albu-Schäffer, T. Bahls, M. Chalon, O. Eiberger, W. Friedl, R. Gruber, S. Haddadin, U. Hagn, R. Haslinger, H. Höppner, S. Jörg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill, N. Seitz, T. Wimböck, S. Wolf, T. Wüsthoff, and G. Hirzinger, 2011, “The DLR Hand Arm System,” IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 3175-3182.
    [24] S. Wolf, O. Eiberger, and G. Hirzinger, 2011, “The DLR FSJ: Energy Based Design of a Variable Stiffness Joint,” IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 5082-5089.
    [25] J. -P. Merlet, 2006, “Parallel Robots,” Springer, Netherlands.
    [26] C. H. Kuo and J. S. Dai, 2011, “A Fully-Isotropic Parallel Orientation Mechanism,” World Congress in Mechanism and Machine Science, Guanajuato, Mexico, pp. 1-7.
    [27] P. Ji and H. Wu, 2001, “Algebraic Solution to Forward Kinematics of a 3-DOF Spherical Parallel Manipulator,” Journal of Robotic Systems, 18(5), pp. 251-257.
    [28] G. Alıcı and B. Shirinzadeh, 2004, “Loci of Singular Configurations of a 3-DOF Spherical Parallel Manipulator,” Robotics and Autonomous Systems, 48(2), pp.77-91.
    [29] R. Di Gregorio, 2001, “Kinematics of a New Spherical Parallel Manipulator with Three Equal Legs: The 3-URC Wrist,” Journal of Robotic Systems, 18(5), pp. 213-219.
    [30] M. Karouia and J. M. Hervé, 2005, “Asymmetrical 3-DOF Spherical Parallel Mechanisms,” European Journal of Mechanics-A/Solids, 24(1), pp. 47-57.
    [31] C. M. Gosselin and E. Lavoie, 1993, “On the Kinematic Design of Spherical Three-Degree-of-Freedom Parallel Manipulators,” The International Journal of Robotics Research, 12(4), pp. 394-402.
    [32] J. Wang and C. M. Gosselin, 2004, “Singularity Loci of a Special Class of Spherical 3-DOF Parallel Mechanisms with Prismatic Actuators,” Journal of Mechanical Design, 126(2), pp. 319-326.
    [33] D. S. Tavkhelidze and N. S. Davitashvili, 1974, “Kinematic Analysis of Five-Link Spherical Mechanisms,” Mechanism and Machine Theory, 9(2), pp. 181-190.
    [34] L. J. Zhang, Y. W. Niu, Y. Q. Li, and Z. Huang, 2006, “Analysis of the Workspace of 2-DOF Spherical 5R Parallel Manipulator,” IEEE International Conference on Robotics and Automation, Orlando, Florida, pp. 1123-1128.
    [35] M. Ouerfelli and V. Kumar, 1994, “Optimization of a Spherical Five-Bar Parallel Drive Linkage,” Journal of Mechanical Design, 116(1), pp. 166-173.
    [36] M. Carricato and V. Parenti-Castelli, 2004, “A Novel Fully Decoupled Two-Degrees-of-Freedom Parallel Wrist,” International Journal of Robotics Research 23(6), pp. 661–667.
    [37] G. Gogu, 2005, “Fully-Isotropic Over-Constrained Parallel Wrists with Two Degrees of Freedom,” IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 4014-4019.
    [38] E. Samson, D. Laurendeau, M. Parizeau, S. Comtois, J. -F. Allan, and C. Gosselin, 2006, “The Agile Stereo Pair for Active Vision,” Machine Vision and Applications, 17(1), pp. 32-50.
    [39] T. Villgrattner and H. Ulbrich, 2011, “Design and Control of a Compact High- Dynamic Camera-Orientation System,” IEEE/ASME Transactions on Mechatronics, 16(2), pp. 221-231.
    [40] M. J. H. Lum, 2004, “Kinematic Optimization of a 2-DOF Spherical Mechanism for a Minimally Invasive Surgical Robot,” Doctoral dissertation, University of Washington.
    [41] S. H. Lee, W. K. Kim, S. M. Oh, and B. J. Yi, 2005, “Kinematic Analysis and Implementation of a Spherical 3-Degree-of-Freedom Parallel Mechanism,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alberta, Canada, pp. 972-977.
    [42] 朱証裕與藍兆杰,中華民國一〇二年,「球面並聯機構簡介與相關研究」,中華民國機構與機器原理學會會刊,第二十四卷第二期,第19~52頁。
    [43] 李奕樵,中華民國一〇〇年,「雙軸平行驅動之輕巧型撓性定向機構」,碩士論文,國立成功大學。
    [44] 吳宜軒,中華民國一〇三年,「使用預載曲樑設計直線式變勁度機構」,碩士論文,國立成功大學。
    [45] 徐嘉佑,中華民國一〇二年,「具兩共置撓性驅動軸機器手腕之動力與控制」,碩士論文,國立成功大學。
    [46] 賴志明,中華民國一〇二年,「以對拉式形狀記憶合金驅動之微型雙軸操縱器」,碩士論文,國立成功大學。
    [47] M. E. Rosheim, 1991, “Robot Wrist, ” U.S. Patent 5,036,724.
    [48] A. Albers, C. Sander, and A. Simsek, 2010, “Development of the Actuation of a New Wrist for the Next Generation of the Humanoid Robot ARMAR,” IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, pp. 677-682.
    [49] W. Li, F. Gao, and J. Zhang, 2005, “R-CUBE, a Decoupled Parallel Manipulator only with Revolute Joints,” Mechanism and Machine Theory, 40(4), pp. 467-473.
    [50] M. Carricato and V. Parenti-Castelli, 2002, “Singularity-Free Fully-Isotropic Translational Parallel Mechanisms,” The International Journal of Robotics Research, 21(2), pp. 161-174.
    [51] X. Kong and C. M. Gosselin, 2002, “Kinematics and Singularity Analysis of a Novel Type of 3-CRR 3-DOF Translational Parallel Manipulator,” The International Journal of Robotics Research, 21(9), pp. 791-798.
    [52] X. Liu, Z. L. Jin, and F. Gao, 2000, “Optimum Design of 3-DOF Spherical Parallel Manipulators with Respect to the Conditioning and Stiffness Indices,” Mechanism and Machine Theory, 35(9), pp. 1257-1267.
    [53] C. Gosselin, 1988, “Kinematic Analysis, Optimization and Programming of Parallel Robotic Manipulators,” Ph.D. Thesis, McGill University.
    [54] C. Gosselin and J. Angeles, 1990, “Singularity Analysis of Closed-Loop Kinematic Chains,” IEEE Transactions on Robotics and Automation, 6(3), pp. 281-290.
    [55] Haydon Kerk, “35000 Series Stepper Motor”. [Online]. Available: http://www.haydonkerk.com/LinearActuatorProducts/StepperMotorLinearActuators/LinearActuatorsHybrid/Size14LinearActuator/tabid/77/Default.aspx
    [56] P. Salvia, L. Woestyn, J. H. David, V. Feipel, S. Van, S. Jan, P. Klein, and M. Rooze, 2000, “Analysis of Helical Axes, Pivot and Envelope in Active Wrist Circumduction,” Clinical Biomechanics, 15(2), pp. 103-111.
    [57] J. Ryu, W. P. Cooney III, L. J. Askew, K. N. An, and E. Y. S. Chao, 1991, “Functional Ranges of Motion of the Wrist Joint,” The Journal of Hand Surgery, 16(3), pp. 409-419.
    [58] C. V. Heck, I. E. Hendryson, and C. R. Rowe, 1966, “Joint Motion: Method of Measuring and Recording,” American Academy of Orthopaedic Surgeons, Chicago.
    [59] D. C. Boone and S. P. Azen, 1979, “Normal Range of Motion of Joints in Male Subjects,” J Bone Joint Surg Am, 61(5), pp. 756-759.
    [60] M. M. Marshall, J. R. Mozrall, and J. E. Shealy, 1999, “The Effects of Complex Wrist and Forearm Posture on Wrist Range of Motion,” Human Factors: The Journal of the Human Factors and Ergonomics Society, 41(2), pp. 205-213.
    [61] Z. M. Li, 2002, “The Influence of Wrist Position on Individual Finger Forces During Forceful Grip,” The Journal of Hand Surgery, 27(5), pp. 886-896.
    [62] Steelss, “JIS-SKH9”. [Online]. Available: http://www.steelss.com/Tool-steel/jis-skh9.html
    [63] H. S. Yan, 1998, “Creative Design of Mechanical Devices,” Springer, Singapore.
    [64] JCSP, “Compression springs”. [Online]. Available: http://www.jcsp.idv.tw/next01/comt5.htm
    [65] C. C. Lan, 2005, “Computational Models for Design and Analysis of Compliant Mechanisms,” Ph.D Thesis, Georgia Institute of technology.
    [66] ANSYS, Inc., 2014, “SOLID186 Homogenous Structural Solid Element Description,” ANSYS 13.0 Help.
    [67] BOURNS, “3048 Linear Motion Potentiometer”. [Online]. Available: https://www.bourns.com/pdfs/3048.pdf
    [68] BOURNS, “Bourns® Linear Motion Potentiometers - Position Sensing Application Note”. [Online]. Available: https://www.bourns.com/pdfs/bourns_lmp_apno.pdf
    [69] Y. Li and Q. Xu, 2008, “Stiffness Analysis for a 3-PUU Parallel Kinematic Machine,” Mechanism and Machine Theory, 43(2), pp. 186-200.
    [70] W. K. Yoon, T. Suehiro, Y. Tsumaki, and M. Uchiyama, 2004, “Stiffness Analysis and Design of a Compact Modified Delta Parallel Mechanism,” Robotica, 22(4), pp. 463-475.
    [71] A. Pashkevich, D. Chablat, and P. Wenger, 2009, “Stiffness Analysis of Overconstrained Parallel Manipulators,” Mechanism and Machine Theory, 44(5), pp. 966-982.
    [72] W. L. Cleghorn, 2005, “Mechanics of Machines,” Oxford University Press, New York.
    [73] G. Gogu, 2005, “Chebychev-Grübler-Kutzbach's Criterion for Mobility Calculation of Multi-Loop Mechanisms Revisited via Theory of Linear Transformations,” European Journal of Mechanics-A/Solids, 24(3), pp. 427-441.
    [74] NSK, “Miniature Ball Bearings - Nsk”. [Online]. Available: http://www.nsk.com.br/upload/file/e126h.pdf
    [75] ニッタ, “6軸力覚センサ アフターサポート”. [Online]. Available: http://www.nitta.co.jp/?post_type=sensor&p=4378
    [76] ニッタ, “6軸力覚センサ アフターサポート- IFS-67M25A50-I40”. [Online]. Available: http://www.nitta.co.jp/images/product/sensor/pdf_support/67M25A50.pdf
    [77] FUTEK, “Product & ServicesLoad CellLSB200FSH00105”. [Online]. Available: http://www.futek.com/files/pdf/Product%20Drawings/lsb200.pdf

    下載圖示 校內:2020-01-29公開
    校外:2020-01-29公開
    QR CODE