| 研究生: |
洪偉欽 Hung, Wei-Ching |
|---|---|
| 論文名稱: |
脫氫表雄固酮分子模版的製備及吸附特性之研究 Preparation and Adsorption Characteristics of Dehydroepiandrosterone (DHEA) -Imprinted Polymer |
| 指導教授: |
楊明長
Yang, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 類固醇 、脫氫表雄固酮 、分子模版 |
| 外文關鍵詞: | MIP, molecularly imprinted polymer, steroid, dehydroepiandrosterone, DHEA |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要分成兩個部份,第一部分是以脫氫表雄固酮(dehydroepiandrosterone, DHEA)為目標物分子、甲基丙烯酸(methacrylic acid, MAA)為單體、乙二醇二甲基丙烯酸酯(ethylene glycol dimethacrylate, EGDMA)為鎖鏈劑及偶氮雙異丁晴(2,2’-azobisisobutironitrile, AIBN)為光聚合起始劑,以總體聚合(bulk polymerization)的方式製備DHEA粉體分子模版(molecularly imprinted polymer, MIP),並探討影響模版吸附能力的各種因素,包括:目標物合成比例、吸附時間、粉體模版用量及吸附液初始濃度等。並使用DHEA以及其衍生物-黃體素(progesterone),作為分子模版選擇性的研究。由研究結果顯示,以DHEA:MAA:EGDMA = 2:25:25 的莫耳比例製備的DHEA粉體分子模版具有較大的吸附能力及選擇性而由吸附條件的探討發現,粉體模版用量以及吸附液初始濃度的增加都有助於DHEA粉體分子模版的吸附。
第二部份是將DHEA分子模版製備成薄膜,其組成物質與DHEA粉體分子模版相同,而其製備方法是將各組成物質均勻混合後,取定量MIP溶液塗佈在矽晶片上並以旋轉塗佈機控制其膜厚。做為基材的矽晶片必須先使用(3-mercaptopropyl)trimethoxysilane(MPS)進行改質處理以增加表面的疏水性。對於DHEA薄膜分子模版吸附能力的影響因素,本研究主要以模版組成以及吸附條件兩個方向進行探討。模板組成對於吸附的影響是以目標物合成比例、單體合成比例、溶劑使用量、單體親疏水性的影響等變因進行探討。初步實驗結果說明,過多目標物合成比例和單體使用量不足皆會造成模版吸附能力的降低,而以DHEA:MAA:EGDMA = 0.75:25:25 的莫耳比例製備的DHEA薄膜分子模版對於目標物分子具有最佳的吸附能力,且在DHEA與progesterone混合吸附測試時有最高的選擇性4.75。另一方面,吸附條件的影響包括:吸附時間、吸附液初始濃度和模版膜厚對吸附的影響等,其吸附液初始濃度對薄膜模版吸附的影響與粉體模版相同,隨著吸附液濃度增加提升模版的吸附。而由模版膜厚的影響可得知,薄膜模版較深層的目標物分子不容易在清洗過程中被洗出,故只有接近表面的部份可進行吸附反應。
In this study, the molecularly imprinted polymer (MIP) with dehydro- epiandrosterone (DHEA) was investigated in two parts.
The first part refered to the preparation of bulk MIP through irradiation polymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) in the presence of DHEA templates. Several effects on the adsorption of powder MIP were studied: amount of template during MIP fabrication, time of adsorption, initial concentration of DHEA adsorption solution and amount of the powder MIP. For the study of the selectivity of powder MIP, the adsorption of DHEA with progesterone, a derivative of template was tested. As the result, the powder MIP, prepared at the molar ratio of DHEA: MAA: EGDMA = 2: 25: 25, had better performance of adsorption and selectivity. From the experimental various adsorption conditions, it was found that both increase in the initial concentration of target molecular and the amount of the powder MIP in adsorption solution increased the adsorption of the powder MIP.
The second part refered to the preparation of membrane MIP by the same composition with that for powder MIP, except the MIP was coated on a silicon wafer. The thickness of membrane MIP was controlled by spin coating. In order to improve the hydrophobicity, silicon wafers were modified by (3-mercaptopropyl)trimethoxysilane (MPS). In this work, two effects on the adsorption of membrane MIP were investigated: the composition ratio of membrane MIP and the condition of adsorption. The important variables were the composition in membrane MIP: template, monomer and solvent. As the result, excess of template or lack of monomer in the membrane MIP decreased the adsorption of membrane MIP. The membrane MIP, prepared at molar ratio of DHEA: MAA: EGDMA = 0.75: 25: 25, had the highest adsorption and the selectivity 4.75 in this study. The adsorption of membrane MIP was affected by the condition, such as time of adsorption, the initial concentration of target molecular in adsorption solution, the thickness of membrane MIP. With increasing initial concentration of target molecular in adsorption solution, the adsorption of membrane MIP increased, similar to the case of powder MIP. With the problem of diffusion, template in deeper part of membrane MIP was difficult to be washed out. Therefore, the adsorption only took place in the region just beneath the surface of membrane MIP.
【01】 周澤川,分子模版微感測晶片
http://imu2.ncku.edu.tw/(2002)
【02】 S.Daunert, et al., Chem. Rev, 100, 2705 (2000).
【03】 G. Vlatakis, L. I. Anderson, R. Muller, and K. Mosbach,
Nature, 361, 645 (1993).
【04】 F. L. Dickert, P. Lieberzeit, and M. Tortschanoff, Sensors and
Actuators B, 56, 186(2000).
【05】 D. Kriz, O. Ramstrom and K. Mosbach, Analytical Chemistry News & Features, 345 (1997).
【06】 J. L. Suarez-Rodriguez and M. E. Diaz-Garcia, Analytica Chemica Acta, 405, 67 (2000).
【08】 F. L. Dickert, R. Sikorski, Materials Science and Engineering C, 10, 39 (1999).
【09】 C. Liang, H. Peng, A. Zhou, L. Nie, and S. Yao, Analytica Chimica Acta, 415, 135 (2000).
【10】 C. Malitesta, I. Losito, and P. G. Zambonin, Anal. Chem. 71, 1366 (1999).
【11】 D. Kriz, K. Mosbach, Analytica Chima Acta 300, 71 (1995).
【12】 Lei Ye, Lund Sweden, Artificial Receptors , (1999)
【13】 Pauling, L; Campbell, D.; “The manufacture of antibodies in vitro”; J. Exper Med; 76, 211200 (1942).
【14】 Wulff, G.; and A. Sarhan, A. Angew Chem,. Int. Ed. Engl., 11, 341(1972)
【15】 Andersson, L; Sellergren, G.; Mosbach, K.; “Imprinting of amino acid derivatives in macroporous polymers’; Tetrahedron Lett.; 25 521. (1984)
【16】 Mayes, A. G.; Mosbach, K., Trends Anal. Chem.; 16, 321(1997).
【17】 Haupt, .K.; Mosbach, K., Chem. Rev.; 100, 2495 (2000)
【18】 Dickert, F. L.; Lieberzeit, P.; Tortschanoff, M., Sens. Actuator
B-Chem.; 65, 186 (2000).
【19】 Ramstrom, O.; Mosbach K., Curr. Opin. Chem. Biol.; 3,
759 (1999).
【20】 B. Sellergren, J. Chromatogr. A, 906, 227 (2001).
【21】 K. Adbo, I. A. Nicholls, Anal. Chim. Acta., 435, 115 (2001).
【22】 G. Brambilla, M. Fiori, B. Rizzo, V. Crescenzi, G. Masci,
J.Chromatogr. B, 759, 27 (2001).
【23】 W. M. Mullett, E. P. C. Lai, Anal. Chem., 70, 3636 (1998).
【24】 B. Sellergren, Anal. Chem., 66, 1578 (1994)
【25】 R. J. Ansell, D. Kriz, K. Mosbach, Anal. Biotechnol., 7, 89 (1996).
【26】 L. I. Andersson, Anal.Chem., 68, 111 (1996).
【27】 P. F. Turner, Advances in Biosensors, JAI Press LTD., London,
England (1993).
【28】 M. Lahav, A. B. Kharitonov, O. Katz, T. Kunitake, I. Willner,
Anal.Chem., 73, 720 (2001).
【29】 Y. Kanekiyo, K. Inoue, Y. Ono, M. Sano, S. Shinkai, D. N.
Reinhoudt, J. Chem. Soc., Perkin Trans. 2, 2719 (1999).
【30】 K. Haupt, K. Noworyta, W. Kutner, Anal. Commun., 36, 391
(1999).
【31】 A. Kugimiya, T. Takeuchi, Electroanalysis, 11, 1158 (1999).
【32】 T. Kobayashi, Y. Murawaki, P. S. Reddy, M. Abe, N. Fujii,
Anal. Chim. Acta., 435, 141 (2001).
【33】 Takayuki Hishiya, Masahiko Shibata, Masaya Kakazu, Hiroyuki
Asanuma, and Makoto Komiyama, Macromolecules , 32, 2265
(1999)
【34】 He Dong, Ai-jun Tong , Long-di Li, Spectrochimica Acta Part A,
59, 279 (2003)
【35】 Alexandre E. Rachkov1, Soo-Hwan Cheong, Anna V.
El'skaya, Kazuyoshi Yano and Isao Karube, Polym. Adv.
Technol, 9, 511 (1998)
【36】 SOO-HWAN CHEONG, ALEXANDRE E. RACHKOV,
JOONG-KON PARK, KAZUYOSHI YANO, ISAO KARUBE,
Journal of Polymer Science: Part A: Polymer Chemistry, 36,
1725 (1998)
【37】 S. H. Cheong, S. McNiven, A. Rachkov, R. Levi, K. Yano, and I.
Karube, Macromolecules , 30, 1317 (1997)
【38】 K. SREENIVASAN, Journal of Applied Polymer Science, 70, 19
(1998)
【39】 K. SREENIVASAN, Journal of Applied Polymer Science, 82, 889
(2001)
【40】 傅祖植,內分泌系統,牛頓出版公司,48-61,(1989)
【41】 Haus E, Nicolau GY, Ghinea E, Dumitriu L, Petrescu E,
Sackett-Lundeen L., Life Sci, 58, 263-7 (1996)
【42】 Gordon GB, Shantz LM, Talaly P., Adv Enzymol Regul, 26, 255 (1987)
【43】 Hall GM, Perry LA, Spector TD., Ann Rheum, 52, 211 (1993)
【44】 Cleary MP, Zisk JF., Int J Obesity, 10, 193 (1986)
【45】 Gansler T, Meller S, Cleary J., Proc Soc Exp Biol Med, 180, 155 (1985)
【46】 Nestler JE, Barlascini CO, Clore JN, Blackard WG., J Endocrin Metab, 66, 57-61 (1988)
【47】 Usiskin KS, Butterworth S, Clore JN, Arad Y, Ginsberg HN, Int J Obes, 14, 457-453 (1990)
【48】 Welle S, Jozefowitz R, Statt M., J Endocrin Metab, 21, 1197 (1990)
【49】 Nowaczynski WF, Fragachan F, Silah J, Millette B, Genest J., Can J Biochem, 46, 1031 (1968)
【50】 B. Sellergren, Techniques and Instrumentation in Analytical
Chemistry volume 23, Elsevier Amsterdam, chapter 5, (2001).
【51】 G. Wulff and A. Biffis, Techniques and Instrumentation in
Analytical Chemistry volume 23, Elsevier Amsterdam, chapter 4
(2001).
【52】 W. H. Scouten, Solid Phase Biochemistry, John Wiley & Sons,
New York, 150 (1983)
【53】 R. D. Hancock and A.E. Martell, Chem Rev., 89, 1875 (1989).
【54】 K. Polborn and K. Severin, Chem. Commun. , 2481 (1999).
【55】 H. Nishide, J. Deguchiand and E. Tsuchida, J. Polym. Sci., Polym.
Chem. Ed., 15, 3023 (1977).
【56】 W. Kuchen and J. Schram, Angew. Chem. Int. Ed. Engl., 27, 1695
(1988).
【57】 Chin I. Lin , Abraham K. Joseph , Chao Kang Chang, Yu Chi
Wang and Yu Der Lee, Analytica Chimica Acta, 481, 145 (2003)
【58】 B. Sellergren, Techniques and Instrumentation in Analytical
Chemistry volume 23, Elsevier Amsterdam, chapter 5, (2001).
【59】 C. Yu and K. Mosbach, J. Org. Chem., 62, 4057(1997)
【60】 B. Sellergren, Molecular and Ionic Recognition with Imprinted
Polymers, American Chemical Society, Washington, DC, chapter
(1998).
【61】 V. A. Davankov, In: Complexation Chromatography
(Chromatographic science series), D. Caignant (Ed.),
Dekker, New York, 57, 197 (1992).
【62】 Pilesky, S. A.; Piletskaya, E. V.; Elgersma, A. V.; Yano, K.;
Karube, I., Biosens. Bioelectron.; 10, 959 (1995).
【63】 Piletsky, S. A.; Pileskaya, E. V.; Panasyuk, T. L.; El’skaya, A. V.;
Levi, R.; Karube, I.; Wulff, G., Macromolecules; 31, 2137 (1998).
【64】 G. Z. Sauerbrey, Z. Phys., 155, 206 (1959).
【65】 Download from:http://www.anttech.com.tw/principle_c.htm
【66】 Malitesta, C.; Losito, I.; Zambonin, P. G., Anal. Chem.; 71, 1366
(1999).
【67】 Levi, R.; McNiven, S.; Piletsky, A.; Cheong, S. H.; Yano, Karube,
I., Anal. Chem.; 69, 2017 (1997).
【68】 Kriz, D.; Ramstrom, O.; Svensson, A.; Mosbach, K., Anal. Chem.;
67, 2142 (1995).
【69】 Soo-hwan Cheong, Alexandre E. Rachkov, Joong-kon Park,
KAZUYOSHI YANO, ISAO KARUBE, Journal of Polymer
Science: Part A: Polymer Chemistry, 36, 1725 (1998)
【70】 Scatchard G. Ann New York Acad Sci: 51, 660 (1949)
【71】 Ronald H. Schmidt, Klaus Mosbach, and Karsten Haupt, Adv.
Mater.,16, 719 (2004)
【72】 Zhan-Hui Wang, Gang Jin, Colloids and Surfaces B: Biointerfaces
34, 173 (2004)
【73】 Feng Zhou, Weimin Liu, Tao Xu, Shujuan Liu, Miao Chen, Jianxi
Liu, Journal of Applied Polymer Science, 92, 1695 (2004)