| 研究生: |
劉光耀 Liu, Kuang-Yao |
|---|---|
| 論文名稱: |
光聚合高分子在微流體管道上的設計與製作 Design and Fabrication of Photopolymers on Microfluidic Channels |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 光聚合高分子 、微流體管道 |
| 外文關鍵詞: | microfluidic channel, photopolymer |
| 相關次數: | 點閱:82 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的主要目的是將光聚合高分子材料製作於細微管柱上,而達到結構最佳化的調整與控制。由於光聚合高分子材料具有聚合快速、成形位置與形狀的選擇性高、多孔性表面具有極大表面積可增加與樣品的接觸,以及高分子表面可依不同需求而進行衍生化修飾等優點,所以可應用於分析化學方面的研究,提升分析工作的效果。
本研究藉由調整單體溶液的成分與比例,以及改變光聚合反應的條件,而針對所生成的光聚合高分子整體性管柱靜相材質在其內部多孔性質與外在結構狀態的變化趨勢進行觀察。實驗結果證明,單體溶液之中所含交聯劑與溶劑彼此之間的比例消長,確實是控制高分子結構的主要因素,而共溶劑的使用也能改變多孔洞性質的表現;另外,光線照射時間與光罩的型式對所形成高分子管柱靜相結構的影響也十分顯著。
用光聚合高分子對分析工作的多項優勢,我們將光聚合高分子材質製作在毛細管柱或微流體管道之中,而能達到許多不同的運用。本研究將強陽離子交換顆粒(SCX beads)混合在光聚合高分子的單體溶液之中,藉由光聚合反應而在毛細管上製作出具有陽離子交換功能的毛細管柱;另一方面,利用特殊的化學修飾反應,也可將常用於蛋白質消化水解的胰蛋白酵素(trypsin)固定於毛細管柱內的光聚合高分子多孔性表面上,形成能對蛋白質樣品進行消化水解反應的整體性管柱靜相結構。藉由光聚合高分子與微型管柱的結合,我們成功製做出具有初步分離能力的微型陽離子交換管柱,以及具有蛋白質消化水解能力的微型酵素反應管柱。
This study aims achieving the best composition and adjustment through the synthesis of photopolymers on micro-channels. Advantages of photopolymers include its ability for fast polymerization, high section of the location and shape in which it forms. Its porous surface enables it to have a large surface area to allow for the maximum contact with the sample. Furthermore, the polymer surface can be modified to meet different needs. These advantages combine to aid in elevating the results in chemical analysis.
By adjusting the contents and proportions of the monomer solution and changing the conditions of photopolyermization, we are able to observe any pattern changes to the inner porous surface and outer structure in the polymers synthesized in the polymeric stationary phase. Results show that polymer synthesis is indeed controlled by changes of portion between the cross-linker and porogenic solvent in the monomer solution. It is also found that the use of co-solvent alters the nature of the porous surface. In addition, the irradiation time and the form of the photo-mask both have an obvious effect to the structure of the polymeric stationary phase.
Due to its many advantages, we are able to synthesize photopolymers inside of capillaries and micro-channels and apply it for many uses. The study mixed SCX beads with the photopolymer monomer solution and through polymerization, constructing capillary micro-columns that are capable of cation exchange. Also, using special chemical modification effects, we are able to attach trypsin on the surface of photopolymers inside of the capillary micro-columns. By doing so, the polymeric stationary phase structure is then able to perform enzyme digestion on the protein samples. By putting photopolymers and capillary micro-columns together, we successfully constructed micro-cation exchange columns capable of preliminary separation ability as well as micro-enzymatic reacting columns that are able to perform protein digestion.
參考資料
1. D.J. Throckmorton, T.J. Shepodd, A.K. Singh, Anal. Chem. 2002, 74, pp 784-789
2. C. Yu, M.H. Davey, F. Svec, J.M.J. Frchet, Anal. Chem. 2001, 73, pp 5088-5096
3. J.P. Quirino, M.T. Dulay, R.N. Zare, Anal. Chem. 2001, 73, pp 5557-5563
4. D.S. Peterson, T. Rohr, F. Svec, J.M.J. Frchet, Anal. Chem. 2002, 74, pp 4081-4088
5. A. Manzs, N. Graber, H.M. Widmer, Sens. Actuators. 1990, B1, pp 244-248
6. H. Minakuchi, K. Nakanishi, N. Soga, N. Ishizuka, N. Tanaka, Anal. Chem. 1996, 68, pp 3498-3501
7. B.E. Slentz, N.A. Penner, F.E. Regnier, J. Chromatogr. A. 2003, 984, pp 97-107
8. 黃冠瑞,「高效能微流體晶片之設計製作與其在生物醫學之應用」,國立成功大學工程科學系,中華民國九十年六月。
9. 徐玄修,「整合型微透析電泳晶片之研發」,國立成功大學化學系,中華民國九十二年六月。
10. M. Kato, M.T. Dulay, B.D. Bennett, J.P. Quirino and R.N. Zare, J. Chromatogr. A 2001, 924, pp 187-195
11. E.C. Peters, M. Petro, F. Svec, J.M.J. Frchet, Anal. Chem. 1997, 69, pp 3646-3649
12. E.C. Peters, M. Petro, F. Svec, J.M.J. Frchet, Anal. Chem. 1998, 70, pp 2288-2295
13. C. Yu, M. Xu, F. Svec, J.M.J. Frchet, J. Polym Sci. A 2002, 40, pp 755-769
14. M. Merhar, A. Podgornik, M. Barut, M. Žigon, A. Štrancar, J. Sep. Sci. 2003, 26, pp 322-330
15. T. Rohr, E. F. Hilder, J. J. Donovan, F. Svec, J.M.J. Frchet, Macromolecules 2003, 36, pp1677-1684
16. J. Lukas, F. Svec, J. Kalal, J. Chromatogr. 1978, 153, pp 15-22
17. F. Svec, J.M.J. Frchet, J. Chromatogr. A 1995, 702, pp 89-95
18. 周孟寬,「光聚合高分子在蛋白質分析上的應用」,國立成功大學化學系,中華民國九十二年六月。
19. R. Hahn, E. Berger, K. Pflegerl, A. Jungbauer, Anal. Chem. 2003, 75, pp 543-548
20. W. Li, D. Fries, A. Alli, A. Malik, Anal. Chem. 2004, 76, pp 218-227
21. J.P. Quirino, M.T. Dulay, B.D. Bennett, R.N. Zare, Anal. Chem. 2001, 73, pp 5539-5543
22. S. Oguri, H. Tanagaki, M. Hamaya, M. Kato, T. Toyo’oka, Anal. Chem. 2003, 75, pp 5240-5245
23. M.T. Dulay, J.P. Quirino, B.D. Bennett, R.N. Zare, J. Sep. Sci. 2002, 25, pp 3-9
24. D. Bandilla, C.D. Skinner, J. Chromatogr. A 2003, 1004, pp 167-179
25. D.S. Peterson, T. Rohr, F. Svec, J.M.J. Frchet, J. Proteome research 2002, 1, pp 563-568
26. M. Kato, K. Sakai-Kato, H.M. Jin, K. Kubota, H. Miyano, T. Toyo’oka, M.T. Dulay, R.N. Zare, Anal. Chem. 2004, 76, pp 1896-1902
27. R.K. Scopes, Protein Purification-Principles and Practice, third edition, Springer-Verlag
28. Grace Vydac co., http://www.vydac.com
29. D. Dogruel, P. Williams, R.W. Nelson, Anal. Chem. 1995, 67, pp4343-4348
30. R.M. Whittal, B.O. Keller, L. Li, Anal. Chem. 1998, 70, pp 5344-5347
31. S. Ekström, P. Önnerfjord, J. Nilsson, M. Bentsson, T. Laurell, G. Marko-Varga, Anal. Chem. 2000, 72, pp 286-293
32. J. Gao, J. Ju, L.E. Locascio, C.S. Lee, Anal. Chem. 2001, 73, pp 2648-2655
33. K. Sakai-Kato, M. Kato, T. Toyo’oka, Anal. Chem. 2003, 75, pp 388-393
34. D. Sehgal, I.K. Vijay, Anal. Biochem. 1994, 218, pp 87-91
35. L. Richert, F. Boulmedais, P. Lavalle, J. Mutterer, E. Ferreux, G. Decher, P. Schaaf, J.C. Voegel, C. Picart, Biomacromolecules 2004, 5, pp 284-294
36. Millipore co., http://www.millipore.com/
37. Swiss Institute of Bioinformatics(SIB) ExPASy Proteomics Server, http://tw.expasy.org/