簡易檢索 / 詳目顯示

研究生: 陳宣佑
CHEN, HSUAN-YU
論文名稱: 顆粒組構對低塑性粉土內沖蝕性質影響
The Effect of Soil Fabric on Erosion Property of Low Plastic Silty Sand
指導教授: 陳景文
Chen, Jing-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 146
中文關鍵詞: 低塑性粉土內沖蝕性質Flexible Wall Pin Hole試驗穩態線
外文關鍵詞: Low plasticity silt, Internal erosion, Flexible Wall Pin Hole Test, Steady-State Line
相關次數: 點閱:185下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地理環境特殊,易形成顆粒細小且不具塑性之土壤,西南部地區此類型之低塑性粉土分佈廣,由於低塑性粉土易受沖蝕作用影響而土壤流失之特性,近年來造成許多地下開挖工程發生管湧破壞之重大工程災害,故對於低塑性粉土之內沖蝕行為與土壤穩態有進行更深入探討之必要。
    前人以Flexible Wall Pin Hole (FWPH)試驗儀進行驟變壓力差試驗,已探討不同狀態之低塑性粉土試體的內沖蝕性質,故本研究將利用FWPH試驗儀及三軸不排水試驗,控制孔隙比、細粒料含量與有效圍壓,更進一步探討土壤細粒料含量變化對抗沖蝕能力及土壤穩態行為之影響。
    根據試驗結果顯示,低塑性粉土的抗沖蝕能力隨著有效圍壓或孔隙比的增加而降低,當細粒料含量增加時,整體而言,抗沖蝕能力會有降低趨勢,但於土壤排列最緊密之30%細粒料含量時,會有提升之現象,由此可知,土壤顆粒排列緊密程度為主要影響土壤抗沖蝕能力之條件。
    另外,根據試驗結果所得之土壤穩態線,當土壤應力狀態位於穩態線下方,其將不受內沖蝕作用產生破壞,反之,則會產生破壞。綜觀以上之結果,就低塑性粉土而論,可提高土層緊密程度或降低地下水位以增加其抗沖蝕能力,且利用土壤穩態線可判斷土壤內沖蝕破壞的發生與否,以供工程上之設計參考用。

    Due to the geographically special environment, large amount of low plasticity slity sand with fines widely spread in Southwestern Taiwan. The low plasticity silt sand is easy to lose due to the internal erosion effect and result to piping failure in many underground excavation cases. Therefore it is necessary to investigate the properties of low plasticity slity sand under condition of internal erosion.
    In previous study, the internal erosion properties of low plasticity silty sand under sudden pressure difference has been investigated by using Flexible Wall Pin Hole apparatus (FWPH). In this study both FWPH test and undrained triaxial test are used to study the effect of fines content on the resistance of internal erosion and the steady state behavior of the low-plasticity silty sand.
    The test results indicated that the resistance of internal erosion of low plasticity sand would decrease as the effective confining pressure or void ratio increases; while as fines content increases, there is a decreasing trend of resistance of internal erosion, but it world increases at 30% fines content, which world be packed most closely. The degree of soil particles packing density is the principal condition affected the resistance of internal erosion of soil.
    The steady state line obtained from test results showed that as the effective stress and void ratio of the silty sand below the steady state line, it will not cause piping failure by internal erosion; on the other hand, it will cause failure. In summary, low plasticity silty sands may increase the resistance of internal erosion by improving the density of the soil or reduce the groundwater level, and the steady state line of soil may be used as the reference for engineering design to determine if failure condition of erosion may occur.

    摘要 I 目錄 VI 圖目錄 IX 表目錄 XIII 照片目錄 XIV 第 1 章 緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3研究內容 3 1.4研究流程 4 第 2 章 文獻回顧 6 2.1低塑性粉土工程性質介紹 6 2.1.1成份組成 6 2.1.2顆粒組構特性 7 2.1.3力學行為 12 2.2粉土質砂的穩定狀態 19 2.2.1臨界狀態的定義 19 2.2.2穩定狀態 21 2.3反土壤行為(Reverse Soil Behavior) 25 2.3.1排水試驗 25 2.3.2不排水試驗 28 2.4管湧穩定分析 33 2.4.1 傳統理論分析 33 2.4.2傳統管湧試驗 34 2.5 FWPH試驗儀不同沖蝕方法之試驗結果比較 37 2.5.1有效圍壓影響之比較 37 2.5.2試體孔隙比影響之比較 41 2.5.3 細粒料含量影響之比較 45 第 3 章 研究方法與儀器 50 3.1 土樣來源 50 3.2 使用儀器介紹 53 3.2.1 FWPH試驗儀之設計理念 54 3.2.2 FWPH試驗儀設備介紹 54 3.2.3 試體達臨界破壞之條件 63 3.2.4 驟變壓力差試驗步驟 65 第 4 章 實驗成果與分析 74 4.1試驗土樣基本性質 74 4.2靜態三軸壓密不排水試驗結果 82 4.2.1應力路徑型態 82 4.2.2 土壤強度參數 88 4.2.3 不同細粒料含量之土壤穩態線 90 4.3土壤內沖蝕試驗成果 94 4.4試驗結果分析 98 4.4.1孔隙比對內沖蝕之影響 98 4.4.2細粒料含量對內沖蝕之影響 101 4.4.3有效圍壓對內沖蝕之影響 104 4.4.4 應力路徑型態與內沖蝕關係 108 4.4.5 穩態線與內沖蝕關係 111 第 5 章 結論與建議 116 5.1結論 116 5.2建議 118 參考文獻 119 附錄A 124 附錄B 134

    1. 吳偉特、楊騰芳,「細粒料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59-74 頁,1987。
    2. 周鴻昇,「NGI單剪應力定體積與不排水狀況下砂土行為之研究」,碩士論文,國立台灣大學土木工程系研究所, 1994。
    3. 林智偉,「無塑性細料對砂質土壤液化阻抗之研究」,碩士論文,國立成功大學土木工程系研究所, 2006。
    4. 林昌源,「集集地震液化土之穩態強度」,碩士論文,國立中央大學土木工程系研究所, 2002。
    5. 林煒喬,「不同圍壓狀態對低塑性粉土內部沖蝕性質之影響」,碩士論文,國立成功大學土木工程系研究所, 2011。
    6. 何志麟,「低塑性粉土內沖蝕性質之研究─驟變壓力差試驗狀況」,碩士論文,國立成功大學土木工程系研究所, 2012。
    7. 陳俊吉,「低塑性粉土工程性質之研究」,博士論文,國立成功大學土木工程學研究所,2013
    8. 陳嘉裕,「細粒料含量對沙土浪化潛能之影響研究」,碩士論文,國立成功大學土木工程學研究所, 1999。
    9. 倪勝火,國立成功大學土壤力學實驗手冊,2006。
    10. 夏啟明,「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,碩士論文,國立台灣大學土木工程研究所, 1992。
    11. 財團法人臺灣營建研究院,「高雄捷運工程橘線CO2區段標LUO09潛盾隧道坍陷原因鑑定報告」,2006。
    12. 財團法人臺灣營建研究院,「高雄捷運工程橘線CO1區段標SUO01車站連續壁滲水坍塌事故再分析與對應契約影響之研究報告」,2007。
    13. 游家豪,「低塑性細料對粉質砂土動態性質之影響」,碩士論文,國立成功大學土木工程系研究所, 2007。
    14. 曾顯琳,「過壓密對砂土穩定狀態及液化阻抗之影響」,碩士論文,1國立台灣工業技術學院營建工程技術研究所, 997。
    15. 黃安斌,林志平,紀雲曜,古志生,蔡錦松,李德河,林炳森, 「台灣中西部粉土細砂液化行為分析」, 地工技術, 第103 期, 第5-30 頁,2005。
    16. 楊騰芳,「細粒料在過壓密及前期微震作用下對飽和殺性土壤液化潛能之影響」,碩士論文,國立台灣大學土木工程研究所, 1986。
    17. 萬鼎工程公司,「高雄捷運紅橘線路網補充地質調查工程地質調查報告書」,2001。
    18. 廖元憶,「台灣西南沿海高細粒料含量砂土的探討」,碩士論文,國立成功大學土木工程系研究所, 2005。
    19. 蕭吉良,「低塑性粉土內部沖蝕性質之研究」,碩士論文,國立成功大學土木工程系研究所, 2010。
    20. ASTM Standard D4221-99 Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer. ASTM International, West Conshohocken, PA. www.astm.org, 2005.
    21. ASTM Standard D4647-06 Standard Test Method for Identification and Classification of Dispersive Clay Soils by the Pinhole Test. ASTM International, West Conshohocken, PA. www.astm.org, 2006.
    22. ASTM Standard D6572-06 Standard Test Methods for Determining Dispersive Characteristics of Clayey Soils by the Crumb Test. ASTM International, West Conshohocken, PA. www.astm.org, 2006.
    23. Chang, N. Y., Yeh, S. T. and Kaufman, L. P., "Liquefaction Potential of Clean and Silty Sands," Proceedings of the Third International Earthquake Micro zonation Conference, Vol. 2, pp.1017-1032, 1982.
    24. Decker, R.S. and Dunnigan, L.P., "Dispersive and Use of the SCS Dispersion Test, "Paper Submitted for ASTM Symposium on Dispersive Clay, June, 1976.
    25. Erten, D., and Mather, M. H., "Cyclic Undrained Behavior of Silty Sand," Soil Dynamics and Earthquake Engineering, Vol. 14, pp.115-123, 1995.
    26. Ishihara, K. and Lee, W. F. "Forensic Diagnosis for Site-Specific Ground conditions in Deep Excavations of Subway Constructions," Geotechnical and Geophysical Site Characterization, Proceeding of the 3rd International Conference on Site Characterization, Taipei, Taiwan, pp.31-59, 2008.
    27. Ishihara, K., "Liquefaction and Flow Failure During Earthquakes" Geotechnical, Vol.43, No.3, pp.315-415, 1993.
    28. Ishihara, K. Soil Behavior in Earthquake Geotechnics, 1996
    29. Ishihara, K., Troncoso, J., Kawase, Y. and Takahashi, Y., "Cyclic Strength Characteristics of Tailing Materials," Soil and Foundations, pp. 127-142, 1980.
    30. Ishihara, K., "Liquefaction and Flow Failure During Earthquakes", Geotechnics, Vol.43, No.3, pp.315-415, 1993.
    31. Kenney, T. C. and Lau, D. "Discussion on Internal Stability of Granular Filters" Can. Geotech. J. 23,420-423, 1986.
    32. Kenney, T. C. and Lau, D. "Internal Stability of Granular Filters." Can. Geotech. J. 22,215-225, 1985.
    33. Lee, K. L. and Fitton, J. A., "Factors Affecting the Cyclic Loading Strength of Soil," Vibration Effects of Earthquakes on Soils and Foundations, ASTM STP 450, pp.71-95, 1969.
    34. Cubrinovski, M. and Ishihara, K., “Maximum and Minimum Void Ratio Chracteristics of Sands” Soil and Foundations Vol.42, No.6, pp.65-78, 2002.
    35. Mulilis, J. P., "The Effect of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands," Report No. EERC 75-18, U. C. Berkeley Earthquake Engineering Research Center, 1975.
    36. Mulilis, J.P., Seed, H.B., Chan, C.K., Mitchell, J.K. and Arulanandan, K., "Effects of Sample Preparation on Sand Liquefaction," Journal of the Geotechnical Engineering Division, ASCE, Vol.103, GT2, pp.91-108 , 1977.
    37. Peacock, W. H., and Seed, H. B., "Sand Liquefaction Under Cyclic Loading Simple Shear Conditions, "Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94 (SM3), 689-708, 1968.
    38. Verdugo, R. and Ishihara, K., “The Steady State of Sandy Soils,” Soils and Foundations, Vol. 36, No.2,pp.81-91,1996.
    39. Sandoval, J., Liquefaction and settlement characteristics of silt soils, Ph.D thesis, University of Missouri-Rolla, Mo, 1989.
    40. Seed, H. B., "Evaluation of Soil Liquefaction Effects on Level Ground during Earthquakes," Liquefaction Problems in Geotechnical Engineering, pp. 1-104, 1976.
    41. Seed, H. B. and Lee, K. L., "Liquefaction of Saturated Sands during Cyclic Loading," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM6, pp. 105-134, 1966.
    42. Shen, C. K., Vrymoed, J. L. and Uyeno, C. K., "The Effect of Fines on Liquefaction of Sands", Proceeding of the Ninth International Conference on Soil Mechanics and Foundation Engineering, Vol. 2, pp.381-385, 1977.
    43. Sherard, J. L., et al., "Identification and Nature of Dispersive Soils, "J. Geotech. Eng. Div., ASCE, Vol 102, No. GT-4, pp. 287-301, 1976.
    44. Sherard, J. L., et al., "Pinhole Test for Identifying Dispersive Soils, "J. Geotech. Eng. Div., ASCE, Vol 102, No. GT-1, pp. 69-85, 1976.
    45. Tomlinson S.S. and Vaid Y.P, “Seepage Forces and Confining Pressure Effects on Piping Erosion” Canadian Geotechnical Journal.,Vol.37. No.1 pp.1-13, 200.
    46. Guo, T. and Prakash, S., "Liquefaction of Silts and Silt-Clay Mixtures, "Journal of Geotechnical and environmental Engineering, ASCE, Vol. 125, pp.706-710, 1999.
    47. Vaid, Y. P., Chern, J. C. and Tumi, H., "Confining Pressure, Grain Angularity and Liquefaction," Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 10, pp. 1229-1235 , 1985.
    48. Vaid, Y. P., Chern, J. C. and Tumi, H., "Confining Pressure, Grain Angularity and Liquefaction," Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 10, pp. 1229-1235, 1985.
    49. Yamamuro, J.A. and Covert K.M. "Steady-State Concepts and Static Liquefaction of Silty Sands," Journal of Geotechnical and environmental Engineering, Vol.124, pp. 868-878,1998.
    50. Yamamuro, J.A. and Covert K.M. "Monotonic and Cyclic Liquefaction of Very Loose Sands with High Silt Content," Journal of Geotechnical and environmental Engineering, Vol.127, No.4, pp. 314-324, 2001.

    下載圖示 校內:2018-08-27公開
    校外:2018-08-27公開
    QR CODE