簡易檢索 / 詳目顯示

研究生: 許桉榤
Hsu, An-Jie
論文名稱: 高效能磁控濺鍍製備正交晶系ZnSnN2於摻氟氧化錫玻璃基板並利用形貌控制提升其光觸媒及壓電相關性質
Enhancement of Photocatalytic and Piezo-related Properties of Orthorhombic ZnSnN2 Grown on FTO Through Morphology Control Using Combinatorial Magnetron Sputtering
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 111
中文關鍵詞: ZnSnN2高效能磁控濺鍍形貌控制光觸媒/壓電/壓光電性質
外文關鍵詞: Orthorhombic ZnSnN2, nanocolumn, morphology control, composition spread, combinatorial magnetron sputtering, piezotronic / piezophototronic effects, photocatalysis / piezophotocatalysis
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ZnSnN2 是近年來開始被討論的三元氮化物。根據文獻,ZnSnN2之能隙約為2電子伏特,可以有效地利用可見光在光催化的應用上。另外,其耐酸鹼之性質可用在較險惡的環境下正常發揮其壓電和光催化之特性。此外,由於其不對稱晶格使其有壓電相關性質,能進一步提升光催化效能。在環保意識日益上昇之下,其壓光電性質可望成為新一代綠色材料。

    本研究中,高效能磁控濺鍍製備Sn3N4摻雜Zn原子合成出正交晶系ZnSnN2於摻氟氧化錫玻璃基板,以及利用形貌控制提升其光觸媒及壓電相關性質,透過XRD,SEM,SIMS,UV-vis, I-V 特徵圖,及光催化效應來研究其光觸媒及壓電相關性質。

    未來工作部分,將進一步提升其光觸媒及壓電相關性質,並利用在製作光感測器和壓力感測器,亦或是運用在分解有機污染物的原件上。

    Fabrication of the ternary nitrides (ZnSnN2, ZTN) is full of challenges due to its high formation energies and limited chemical potential regions.
    In the current study, well-aligned ZTN nanocolumns on the FTO substrate were successfully synthesized using combinatorial magnetron sputtering through the Zn-Sn3N4 composition spreads and morphology control. . We found that Location 1 and 2 on the Zn-Sn3N4 composition spread exhibited the excellent crystallinity of orthorhombic (Pna21) ZnSnN2 and the promising nanocolumns structure. Orthorhombic structures and growth direction of ZTN were ascertained from XRD patterns through the deconvolution of the peak at approximately 33° and locked coupled mode, respectively. The band gap of ZTN extracted from the UV-vis spectrum further supported the successful fabrication of orthorhombic ZTN. The asymmetric I-V characteristics and Schottky barrier height variation as a function of pressures suggested the piezotronic and piezophototronic effects. In addition, the piezotronic / piezophototronic enhanced photodegradation of methylene blue (MB) was observed, in which the •OH and O2•- radicals were ascertained to be responsible for the degradation from the scavenger experiment.

    Key words: Orthorhombic ZnSnN2, nanocolumn, morphology control, composition spread, combinatorial magnetron sputtering, piezotronic / piezophototronic effects, photocatalysis / piezophotocatalysis.

    口試合格證明 I 摘要 I Abstract II 誌謝 III Content V Table Content IX Figure Content X Chapter 1. Introduction 1 I. Objective 1 II. Piezoelectric materials 1 A. Piezoelectric oxides 2 B. Piezoelectric nitrides 3 (1) III-Nitride 4 (2) Zn-IV-Nitrides (Zn-IV-N2) 7 III. ZnSnN2 11 A. Orthorhombic versus monoclinic ZnSnN2 14 B. Burstein-Moss effect of ZnSnN2 20 C. Thermodynamic stability and fabrication of ZnSnN2 21 (1) Thermodynamic stability 21 (2) Typical fabrication of ZnSnN2 25 a. RF co-sputtering 25 b. Plasma-assisted molecular beam epitaxy (MBE) 27 c. DC magnetron sputtering 29 d. Metathesis reaction under high pressure 31 e. Plasma-assisted vapor-liquid-solid epitaxy 31 IV. Combinatorial composition spreads of ZnSnN2 31 V. Potential applications of ZnSnN2 32 A. Photocatalysis 32 B. Piezotronic and piezophototronic effects 35 C. Piezophotocatalysis 42 VI. Motivation 51 Chapter 2. Experimental Section 53 I. Materials and Equipment 53 A. Sputtering target, gas, and substrate 53 B. Equipment 54 (1) Ultrasonic cleaner 54 (2) Combinatorial magnetron reactive sputtering 55 II. Fabrication of samples 57 A. Pre-sputtering 57 B. Fabrication of Sn3N4 nanocolumns 57 C. Fabrication of Zn nanocolumns 58 D. Fabrication of Zn-SnN2 composition spreads 59 E. Etching process 60 III. Characterization tools 61 A. X-Ray Diffraction (XRD) analysis 61 B. Scanning electron microscope (SEM) 63 C. UV-vis (absorbance) measurement 64 D. XPS (X-ray Photoelectron Spectroscopy) 66 E. Photodegradation 67 F. Photoelectrochemical (PEC) measurement 67 G. I-V measurement 68 H. Incident Photon-Electron Conversion Efficiency (IPCE) 69 I. Secondary ion mass spectroscopy (SIMS) 72 Chapter 3. Results and discussion 73 I. Fabrication of Sn3N4 nanocolumn 73 A. Working pressure 74 B. Working power 75 C. Flow rate of Ar and N2 76 II. Fabrication of Zn 80 III. Fabrication of ZnSnN2 (Zn-Sn3N4 composition spreads) 82 A. XRD analysis 86 B. Removal of metal Sn by using HCl as the etchant 92 IV. Further characterizations of Sample #155 95 A. Locked coupled mode of XRD 95 B. UV-vis spectroscopy 97 C. SIMS 98 D. Photodegradation 100 Chapter 4. Conclusions and Future work 103 I. Combinatorial methodology by magnetron sputtering 103 II. Phase determination and growth direction 103 III. Morphology control 103 IV. Optical property 104 V. Constituent elements distribution 104 VI. Photocatalytic and piezophotocatalytic properties 104 VII. Future work 104 Reference 106 Table Content Table 1.1 Various constants of III-nitrides. PSP is the spontaneous polarization, e33 and e31 are piezoelectric constants, C13 and C33 are elastic deformation constants, and a0 is the lattice constant [28]. 4 Table 1.2 Energy band gap of GaN and InN [30]. 5 Table 1.3 Simulated lattice parameters and experimental data for Zn-IV-N2 materials [42]. 10 Table 1.4 Experimentally determined lattice parameters and calculated lattice parameters of ZnSnN2 [44]. 12 Table 1.5 Calculated lattice parameters for Pna21 and Pmc21 [48]. 17 Table 2.1 Information of targets, gases, and substrates used in this study. 53 Table 3.1 Fabrication conditions for Zn Samples #15, #18, #21, and #31. 81 Table 3.2 Various conditions for depositing thin layers of Sn3N4 and Zn. 82 Table 3.3 Various conditions for depositing thick layers of Sn3N4 and Zn in each cycle. 83 Table 3.4 Various conditions for depositing thick and thin layers of Sn3N4 and Zn in each cycle, respectively. 85 Table 3.5 Peak positions of ZTN [48], Sn3N4 (#01-070-3184), and Sn (#00-004-0673). 87 Figure Content Fig. 1.1 GaN structure and the orientation of the spontaneous polarization for the Ga-face (a) and N-face (b) [29]. 5 Fig. 1.2 Maxima of conduction band and valence band, and band gap energy for the GaxAl1-xN, InxGa1-xN, and InxAl1-xN ternary alloys versus the metal content [30]. 6 Fig. 1.3 Piezoelectric coefficient of ZnO and GaN [31]. 7 Fig. 1.4 Crystal structure of Zn-IV-N2. Red spheres represent zinc atoms. Blue spheres represent IV elements. Green spheres represent nitrogen [35]. 8 Fig. 1.5 Energy band structure of ZnSiN2, ZnGeN2, and ZnSnN2 [42]. 11 Fig. 1.6 Band gaps versus “a” lattice constants for III–nitrides, Zn–IV–nitrides, and their alloys [44]. 13 Fig. 1.7 Wurtzite structure of GaN and ZnSnN2 [35]. 14 Fig. 1.8 Two possible lattice structures of ZnSnN2. (a) Orthorhombic. (b) Monoclinic [46]. 15 Fig. 1.9 Two space groups of orthorhombic structure [47]. 16 Fig. 1.10 Schematic of the wurtzite-derived structure of ZnSnN2 including two possible space groups, the 16-atom Pna21 and the 8-atom Pmc21orthorhombic structures [48]. 17 Fig. 1.11 Calculated powder diffraction spectrum of ZnSnN2 [48]. 18 Fig. 1.12 Calculated band structure of orthorhombic Pna21 ZnSnN2 [48] . 19 Fig. 1.13 Electronic density of states of orthorhombic Pna21 ZnSnN2 [48]. 19 Fig. 1.14 Calculated shift of the band gap as a function of the electron concentration [48]. 21 Fig. 1.15 Calculated chemical potential stable regions of single-phase ZnSnN2 [35]. 22 Fig. 1.16 Defect formation energy versus the fermi energy [35]. 24 Fig. 1.17 Wavefunction of SnZn and On [35]. 25 Fig. 1.18 Summary of data collected via combinatorial experiments [49]. 26 Fig. 1.19 Optical band gap versus free electron density for the ZnSnN2 films [51]. 28 Fig. 1.20 Calculated DFT band structure of ordered orthorhombic ZnSnN2 (blue line) and fully disordered pseudo-wurtzite ZnSnN2 (red line) [51]. 29 Fig. 1.21 AM1.5 solar spectrum and the absorption coefficient versus light wavelength for ZnSnN2 and other solar absorber [52]. 30 Fig. 1.22 Schematic of basic photocatalytic mechanism of a semiconductor [55]. 34 Fig. 1.23 Schematic diagram of the two-way and three-way coupling (semiconductor, photoexcitation, piezoelectricity) of materials [21]. 36 Fig. 1.24 Schematic diagram of piezotronic effect under tensile and compressive strain. (a) Nanowire with two bonding end. (b) Energy band diagram [1]. (c) Changes of transport characteristics of device illustrated by I-V curves. (d) I-V characteristics of device under different strain [66]. 38 Fig. 1.25 Energy band diagram for (a) contact between semiconductor and metal, (b) under light illumination, and (c) under a stress [67]. 39 Fig. 1.26 Energy band diagrams for a p-n junction that is made by two kinds of materials with similar band gaps (black and red lines denotes without and with stress, respectively) [67]. 41 Fig. 1.27 I-V characteristics of the piezophototronic effect (a) under various intensities of a light source, and (b) under various strain and intensity of a light source [1]. 41 Fig. 1.28 Mechanism of piezoelectric-potential-driven currents at the interface of piezoelectric material and water [68]. 42 Fig. 1.29 Water splitting of ZnO fibers or BaTiO3 dendrites by ultrasonic vibration [69]. 44 Fig. 1.30 Schematic diagrams of the degradation of AO7(blue circles) on BaTiO3 [70]. 45 Fig. 1.31 Energy band diagram Pb(Mg1/3Nb2/3)O3-32PbTiO3(PMN-PT) under various piezoelectric polarizations [2]. 47 Fig. 1.32 Schematic of sonophotocatalysis (Ag2O−BaTiO3) [71]. 48 Fig. 1.33 Mechnism of piezo-enhanced photocatalysis effect [72]. 49 Fig. 1.34 (a) 3D Schematic of the ZnO/TiO2 nanocomposite. The band diagram for ZnO/TiO2 under strain free (b), compressed strain (c), and tensile strain (d) [73]. 50 Fig. 2.1 Photo of the ultrasonic cleaner. 54 Fig. 2.2 Combinatorial magnetic reactive sputtering system. 56 Fig. 2.3 Combinatorial chamber set-up. 56 Fig. 2.4 Schematic fabrication of the Sn3N4 natural gradient. 58 Fig. 2.5 Schematic fabrication of the Zn natural gradient. 59 Fig. 2.6 Schematic of fabricating Zn-Sn3N4 composition spreads. 60 Fig. 2.8 Schematic of the diffraction rule for the locked coupled mode. 63 Fig. 2.9 Photo of SEM (JEOL JSM-6701F). 64 Fig. 2.10 Photo of UV-vis set-up. 65 Fig. 2.11 Photo of XPS ULVAC-PHI PHI 5000 VersaProbe. 66 Fig. 2.12(a) PEC cell (b) PEC potenstat detector (CH instruments). 68 Fig. 2.13 (a) I-V measurement set-up. (b) Schemtic of the contact between probe tips and samples. 69 Fig. 2.14 Schemtic of an IPCE cell. 71 Fig. 2.15 IPCE measurement set-up. 71 Fig. 2.16 Photo of SIMS set-up. 72 Fig. 3.1 Side view SEM images of Sn3N4 using various working pressures: (a) 20 mTorr; (b) 25 mTorr; (c) 30 mTorr; and (d) 35 mTorr. 74 Fig. 3.2 XRD patterns of Sn3N4 using various working pressures: (a) 20 mTorr; (b) 25 mTorr; (c) 30 mTorr; and (d) 35 mTorr. (Sn3N4 #01-070-3184; FTO #00-041-1445; Sn #00-004-0673) 75 Fig. 3.3 Side view SEM images of Sn3N4 fabricated using various working powers: (a) RF 40 W, (b) RF 45 W, (c) RF 50 W, and (d) RF 75 W. 76 Fig. 3.4 Side view SEM images of Sn3N4 using various Ar:N2 flow rate: (a) 38:2 sccm; (b) 42:2 sccm; (c) 42:3 sccm; and (d) 48:3 sccm. 77 Fig. 3.5 XRD patterns of Sn3N4 using various Ar:N2: 48:3 (top) and 42:3 (bottom). (Sn3N4 #01-070-3184; FTO #00-041-1445; Sn #00-004-0673) 78 Fig. 3.6 SEM images of the Sn3N4 fabricated using RF 50 W, 25 mTorr, Ar:N2 = 42:3, and 450°C. (a) Top view. (b) Side view. 79 Fig. 3.7 XRD pattern of Sn3N4 fabricated using RF 50 W, 25 mTorr, Ar:N2 = 42:3, and 450°C. (Sn3N4 #01-070-3184; FTO #00-041-1445; Sn #00-004-0673) 80 Fig. 3.8 Side view SEM images of Zn Samples (a) #15, (b) #18, (c) #21, and (d) #31. 81 Fig. 3.9 Side view SEM images of various Samples (a) #122, (b) #123, (c) #124, and (d) #126. 83 Fig. 3.10 Side view SEM images of various Samples (a) #128, (b) #130, (c) #131, and (d) #132. 84 Fig. 3.11 Side view SEM images of various Samples (a) #152, (b) #153, (c) #154, and (d) #155, taken at Location 1. 85 Fig. 3.12 Side view SEM images of various Samples (a) #152, (b) #153, (c) #154, and (d) #155, taken at Location 3. 86 Fig. 3.13 (Left top) Six piece FTO substrates (4 x 24 mm2/each) cut from a single 24 x 24 mm2 FTO substrate (Left bottom). The assembled substrate (right top) was prepared for the deposition of Zn-Sn3N4 composition spreads. 88 Fig. 3.14 Schematic of characteristic peaks of orthorhombic and monoclinic ZTN [48]. Sn3N4 is also compared 89 Fig. 3.15 XRD results from six locations of Sample #155. (ZTN [48]; Sn3N4 #01-070-3184; FTO #00-041-1445; Sn #00-004-0673) 90 Fig. 3.16 Deconvolution results of the peak at approximately 32.8° from Location 1. (ZTN [48]; Sn3N4 #01-070-3184) 90 Fig. 3.17 Cross-section SEM images from six locations of Sample #155. 91 Fig. 3.18 Top view SEM images from six locations of Sample #155. 91 Fig. 3.19 Photos of Sample #155. (a) Before etching. (b) After etching. 92 Fig. 3.20 XRD patterns of Sample #155 taken at Location 1 before (blue curve) and after (red curve) etching processes. (ZTN [48]; Sn3N4 #01-070-3184; FTO #00-041-1445; Sn #00-004-0673) 93 Fig. 3.21 Cross section (a, c) and top view (b, d) SEM images taken at Location 1 of Sample #155: (a, b) before etching, and (c, d) after etching. 94 Fig. 3.22 Cross section (a, c) and top view (b, d) SEM images taken at Location 2 of Sample #155: (a, b) before etching, and (c, d) after etching. 94 Fig. 3.23 Locked coupled scan (red curve) and θ-2θ scan (blue curve) of Location 1 on Sample #155. 96 Fig. 3.24 Locked coupled scan of Location 1 on Sample #155 (blue) and Sn3N4 (red). 96 Fig. 3.25 UV-vis spectrum of Locations 1 and 2 on Smaple #155. 97 Fig. 3.26 Tauc plot of Locations 1 and 2 on Sample #155. 98 Fig. 3.27 SIMS depth profile of Locations 1 and 2 on Sample #155. 99 Fig. 3.28 Photocatalytic results of Locations 1 and 2 on Sample #155. (a) Self-degradation of MB solutions. (b) ZTN sample only. (c) ZTN and a transparent quartz glass and ultrasonic vibration. 101 Fig. 3.29 Photodegradation kinetics. (a) Plot of ln(C0/C) versus irradiation time. (b) Extracted photodegaradtion rate constant (k). 102 Fig. 3.30 Scavenger experiments using Locations 1 and 2 on Sample #155. (a) addition of 1 mmloe Na2SO4 (scavenger of O2•-). (b) without addition. (c) addition of 1 mmole t-BuOH (scavenger of •OH). 102

    [1] Z. L. Wang, "Piezotronic and Piezophototronic Effects," The Journal of Physical Chemistry Letters 1, 1388-1393 (2010).
    [2] M. B. Starr and X. Wang, "Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials," Sci Rep 3, 2160 (2013).
    [3] Z. Guo, H. Li, L. Zhou, D. Zhao, Y. Wu, Z. Zhang, W. Zhang, C. Li, and J. Yao, "Large-scale horizontally aligned ZnO microrod arrays with controlled orientation, periodic distribution as building blocks for chip-in piezo-phototronic LEDs," Small 11, 438-445 (2015).
    [4] W. Deng, L. Jin, B. Zhang, Y. Chen, L. Mao, H. Zhang, and W. Yang, "A flexible field-limited ordered ZnO nanorod-based self-powered tactile sensor array for electronic skin," Nanoscale 8, 16302-16306 (2016).
    [5] X. Guo, Y. Fu, D. Hong, B. Yu, H. He, Q. Wang, L. Xing, and X. Xue, "High-efficiency sono-solar-induced degradation of organic dye by the piezophototronic/photocatalytic coupling effect of FeS/ZnO nanoarrays," Nanotechnology 27, 375704 (2016).
    [6] X. Liu, X. Yang, G. Gao, Z. Yang, H. Liu, Q. Li, Z. Lou, G. Shen, L. Liao, C. Pan, and Z. Lin Wang, "Enhancing Photoresponsivity of Self-Aligned MoS2 Field-Effect Transistors by Piezo-Phototronic Effect from GaN Nanowires," ACS Nano 10, 7451-7457 (2016).
    [7] J. Zhou, P. Fei, Y. Gu, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, "Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires," Nano Lett 8, 3973-3977 (2008).
    [8] L. Zhu, L. Wang, F. Xue, L. Chen, J. Fu, X. Feng, T. Li, and Z. L. Wang, "Piezo-Phototronic Effect Enhanced Flexible Solar Cells Based on n-ZnO/p-SnS Core-Shell Nanowire Array," Adv Sci (Weinh) 4, 1600185 (2017).
    [9] H. K. Zhong, J. Xia, F. C. Wang, H. S. Chen, H. Z. G. Wu, and S. S. Lin, "Graphene-Piezoelectric Material Heterostructure for Harvesting Energy from Water Flow," Adv. Funct. Mater. 27, 1604226-n/a (2017).
    [10] R. R. Bao, C. F. Wang, L. Dong, R. M. Yu, K. Zhao, Z. L. Wang, and C. F. Pan, "Flexible and Controllable Piezo-Phototronic Pressure Mapping Sensor Matrix by ZnO NW/p-Polymer LED Array," Adv. Funct. Mater. 25, 2884-2891 (2015).
    [11] T. Qi, I. Grinberg, J. W. Bennett, Y. H. Shin, A. M. Rappe, K. L. Yeh, and K. A. Nelson, presented at the 2010 DoD High Performance Computing Modernization Program Users Group Conference, 2010 (unpublished).
    [12] M. Khalid, M. Shoaib, and A. A. Khan, "Strontium doped lead zirconate titanate ceramics: study of calcination and sintering process to improve piezo effect," J Nanosci Nanotechnol 11, 5440-5445 (2011).
    [13] J. Y. Chang, M. Domnner, C. Chang, and L. W. Lin, "Piezoelectric nanofibers for energy scavenging applications," Nano Energy 1, 356-371 (2012).
    [14] X. Chen, S. Guo, J. Li, G. T. Zhang, M. Lu, and Y. Shi, "Flexible piezoelectric nanofiber composite membranes as high performance acoustic emission sensors," Sensors and Actuators a-Physical 199, 372-378 (2013).
    [15] P. K. Panda and B. Sahoo, "PZT to Lead Free Piezo Ceramics: A Review," Ferroelectrics 474, 128-143 (2015).
    [16] Q. Li, J. X. Wei, J. R. Cheng, and J. G. Chen, "High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics," Journal of Materials Science 52, 229-237 (2017).
    [17] V. Chang, H. Rojas, and J. Jorge, "Piezoelectric and thermoelectric response of cuprous oxide, Cu2O," Sensors and Actuators A: Physical 37-38, 375-378 (1993).
    [18] A. Kołodziejczak-Radzimska and T. Jesionowski, "Zinc Oxide—From Synthesis to Application: A Review," Materials 7 (2014).
    [19] E. S. Nour, A. Bondarevs, P. Huss, M. Sandberg, S. Gong, M. Willander, and O. Nur, "Low-Frequency Self-Powered Footstep Sensor Based on ZnO Nanowires on Paper Substrate," Nanoscale Res Lett 11, 156 (2016).
    [20] X. Li, M. Chen, R. Yu, T. Zhang, D. Song, R. Liang, Q. Zhang, S. Cheng, L. Dong, A. Pan, Z. L. Wang, J. Zhu, and C. Pan, "Enhancing Light Emission of ZnO-Nanofilm/Si-Micropillar Heterostructure Arrays by Piezo-Phototronic Effect," Adv Mater (2015).
    [21] Z. L. Wang, R. S. Yang, J. Zhou, Y. Qin, C. Xu, Y. F. Hu, and S. Xu, "Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics," Materials Science & Engineering R-Reports 70, 320-329 (2010).
    [22] Y. Xia, J. Wang, R. S. Chen, D. L. Zhou, and L. Xiang, "A Review on the Fabrication of Hierarchical ZnO Nanostructures for Photocatalysis Application," Crystals 6, 148 (2016).
    [23] M. K. Lo, S. Y. Lee, and K. S. Chang, "Study of ZnSnO3-Nanowire Piezophotocatalyst Using Two-Step Hydrothermal Synthesis," Journal of Physical Chemistry C 119, 5218-5224 (2015).
    [24] Y. Y. Choi, H. K. Kim, H. W. Koo, T. W. Kim, and S. N. Lee, "Flexible ZnSnO3/Ag/ZnSnO3 multilayer electrodes grown by roll-to-roll sputtering on flexible polyethersulfone substrates," Journal of Vacuum Science & Technology A 29, 061502 (2011).
    [25] J. Y. Son, G. Lee, M. H. Jo, H. Kim, H. M. Jang, and Y. H. Shin, "Heteroepitaxial ferroelectric ZnSnO3 thin film," J. Am. Chem. Soc. 131, 8386-8387 (2009).
    [26] J. M. Wu, C. Xu, Y. Zhang, Y. Yang, Y. Zhou, and Z. L. Wang, "Flexible and transparent nanogenerators based on a composite of lead-free ZnSnO3 triangular-belts," Adv Mater 24, 6094-6099 (2012).
    [27] J. M. Wu, C. Y. Chen, Y. Zhang, K. H. Chen, Y. Yang, Y. Hu, J. H. He, and Z. L. Wang, "Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire," ACS Nano 6, 4369-4374 (2012).
    [28] B. E. Foutz, O. Ambacher, M. J. Murphy, V. Tilak, and L. F. Eastman, "Polarization Induced Charge at Heterojunctions of the III–V Nitrides and Their Alloys," physica status solidi (b) 216, 415-418 (1999).
    [29] N. Gogneau, N. Jamond, P. Chretien, F. Houze, E. Lefeuvre, and M. Tchernycheva, "From single III-nitride nanowires to piezoelectric generators: New route for powering nomad electronics," Semiconductor Science and Technology 31, 103002 (2016).
    [30] T. Pavloudis, J. Kioseoglou, T. Karakostas, and P. Komninou, "Ordered structures in III-Nitride ternary alloys," Computational Materials Science 118, 22-31 (2016).
    [31] R. Agrawal and H. D. Espinosa, "Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation," Nano Lett 11, 786-790 (2011).
    [32] Y. Y. Chen, D. J. Yuan, M. C. Yang, D. L. Wang, and X. H. Sun, "High efficiency GaN LEDs with submicron-scale 2Dperiodic structures directly fabricated by laser interference ablation," Optics and Laser Technology 90, 211-215 (2017).
    [33] J. Dzuba, G. Vanko, M. Drzik, I. Ryger, V. Kutis, J. Zehetner, and T. Lalinsky, "AlGaN/GaN diaphragm-based pressure sensor with direct high performance piezoelectric transduction mechanism," Appl. Phys. Lett. 107, 122102 (2015).
    [34] A. Osinsky, V. Fuflyigin, L. D. Zhu, A. B. Goulakov, J. W. Graff, and E. F. Schubert, presented at the Proceedings 2000 IEEE/ Cornell Conference on High Performance Devices (Cat. No.00CH37122), 2000 (unpublished).
    [35] S. Chen, P. Narang, H. A. Atwater, and L. W. Wang, "Phase stability and defect physics of a ternary ZnSnN2 semiconductor: first principles insights," Adv Mater 26, 311-315 (2014).
    [36] T. Endo, Y. Sato, H. Takizawa, and M. Shimada, "High-pressure synthesis of new compounds, ZnSiN2 and ZnGeN2 with distorted wurtzite structure," Journal of Materials Science Letters 11, 424-426 (1992).
    [37] T. Cloitre, A. Sere, and R. L. Aulombard, "Epitaxial growth of ZnSiN2 single-crystalline films on sapphire substrates," Superlattices and Microstructures 36, 377-383 (2004).
    [38] B. P. Cook, H. O. Everitt, I. Avrutsky, A. Osinsky, A. Cai, and J. F. Muth, "Refractive indices of ZnSiN2 on r-plane sapphire," Appl. Phys. Lett. 86, 121906 (2005).
    [39] M. Maunaye and J. Lang, "Preparation et proprietes de ZnGeN2," Mater. Res. Bull. 5, 793-796 (1970).
    [40] S. Kikkawa and H. Morisaka, "RF-sputter deposition of Zn–Ge nitride thin films," Solid State Commun. 112, 513-515 (1999).
    [41] T. Misaki, A. Wakahara, H. Okada, and A. Yoshida, "Epitaxial growth and characterization of ZnGeN2 by metalorganic vapor phase epitaxy," J. Cryst. Growth 260, 125-129 (2004).
    [42] A. Punya, W. R. L. Lambrecht, and M. van Schilfgaarde, "Quasiparticle band structure of Zn-IV-N2 compounds," Physical Review B 84, 165204 (2011).
    [43] P. Ziesche, S. Kurth, and J. P. Perdew, "Density functionals from LDA to GGA," Computational Materials Science 11, 122-127 (1998).
    [44] P. C. Quayle, K. L. He, J. Shan, and K. Kash, "Synthesis, lattice structure, and band gap of ZnSnN2," Mrs Communications 3, 135-138 (2013).
    [45] S. W. Jang, T. Kotani, H. Kino, K. Kuroki, and M. J. Han, "Quasiparticle self-consistent GW study of cuprates: electronic structure, model parameters, and the two-band theory for Tc," Scientific Reports 5, 12050 (2015).
    [46] N. Feldberg, J. D. Aldous, W. M. Linhart, L. J. Phillips, K. Durose, P. A. Stampe, R. J. Kennedy, D. O. Scanlon, G. Vardar, R. L. Field, T. Y. Jen, R. S. Goldman, T. D. Veal, and S. M. Durbin, "Growth, disorder, and physical properties of ZnSnN2," Appl. Phys. Lett. 103, 042109 (2013).
    [47] P. C. Quayle, E. W. Blanton, A. Punya, G. T. Junno, K. L. He, L. Han, H. P. Zhao, J. Shan, W. R. L. Lambrecht, and K. Kash, "Charge-neutral disorder and polytypes in heterovalent wurtzite-based ternary semiconductors: The importance of the octet rule," Physical Review B 91, 205207 (2015).
    [48] L. Lahourcade, N. C. Coronel, K. T. Delaney, S. K. Shukla, N. A. Spaldin, and H. A. Atwater, "Structural and optoelectronic characterization of RF sputtered ZnSnN2," Adv Mater 25, 2562-2566 (2013).
    [49] A. N. Fioretti, A. Zakutayev, H. Moutinho, C. Melamed, J. D. Perkins, A. G. Norman, M. Al-Jassim, E. S. Toberer, and A. C. Tamboli, "Combinatorial insights into doping control and transport properties of zinc tin nitride," Journal of Materials Chemistry C 3, 11017-11028 (2015).
    [50] A. N. Fioretti, E. S. Toberer, A. Zakutayev, and A. C. Tamboli, presented at the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 2015 (unpublished).
    [51] T. Veal, N. Feldberg, N. Quackenbush, W. Linhart, D. Scanlon, and S. Durbin, "Band Gap Dependence on Cation Disorder in ZnSnN2 Solar Absorber," Advanced energy materials 5, 1501462 (2015).
    [52] F. Deng, H. Cao, L. Liang, J. Li, J. Gao, H. Zhang, R. Qin, and C. Liu, "Determination of the basic optical parameters of ZnSnN2," Opt. Lett. 40, 1282-1285 (2015).
    [53] R. F. Qin, H. T. Cao, L. Y. Liang, Y. F. Xie, F. Zhuge, H. L. Zhang, J. H. Gao, K. Javaid, C. C. Liu, and W. Z. Sun, "Semiconducting ZnSnN2 thin films for Si/ZnSnN2 p-n junctions," Appl. Phys. Lett. 108, 142104 (2016).
    [54] F. Kawamura, N. Yamada, M. Imai, and T. Taniguchi, "Synthesis of ZnSnN2 crystals via a high-pressure metathesis reaction," Crystal Research and Technology 51, 220-224 (2016).
    [55] S. Bai, J. Jiang, Q. Zhang, and Y. Xiong, "Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations," Chem Soc Rev 44, 2893-2939 (2015).
    [56] K. Nakata and A. Fujishima, "TiO2 photocatalysis: Design and applications," Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13, 169-189 (2012).
    [57] A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature 238, 37-38 (1972).
    [58] I. K. Punithavathy, J. P. Richard, S. J. Jeyakumar, M. Jothibas, and P. Praveen, "Photodegradation of methyl violet dye using ZnO nanorods," Journal of Materials Science-Materials in Electronics 28, 2494-2501 (2017).
    [59] J. Fang, J. Xu, J. Chen, X. Huang, and X. Wang, "Enhanced photocatalytic activity of molecular imprinted nano α-Fe2O3 by hydrothermal synthesis using methylene blue as structure-directing agent," Colloids and Surfaces A: Physicochemical and Engineering Aspects 508, 124-134 (2016).
    [60] X. X. Ji, C. C. Bai, Q. H. Zhao, and A. H. Wang, "Facile synthesis of porous SnO2 quasi-nanospheres for photocatalytic degradation of Rhodamine B," Materials Letters 189, 58-61 (2017).
    [61] X. Chen and C. Burda, "The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials," J. Am. Chem. Soc. 130, 5018-5019 (2008).
    [62] A. P. Hui, J. Z. Ma, J. L. Liu, Y. Bao, and J. Zhang, "Morphological evolution of Fe doped sea urchin-shaped ZnO nanoparticles with enhanced photocatalytic activity," Journal of Alloys and Compounds 696, 639-647 (2017).
    [63] P. Senthil Kumar, M. Selvakumar, S. Ganesh Babu, S. Induja, and S. Karuthapandian, "CuO/ZnO nanorods: An affordable efficient p-n heterojunction and morphology dependent photocatalytic activity against organic contaminants," Journal of Alloys and Compounds 701, 562-573 (2017).
    [64] Y. Liu, Y. Zhang, Q. Yang, S. M. Niu, and Z. L. Wang, "Fundamental theories of piezotronics and piezo-phototronics," Nano Energy 14, 257-275 (2015).
    [65] Z. L. Wang, "Nanopiezotronics," Advanced Materials 19, 889-892 (2007).
    [66] Z. L. Wang, "Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics," Nano Today 5, 540-552 (2010).
    [67] Z. L. Wang, "Progress in piezotronics and piezo-phototronics," Adv Mater 24, 4632-4646 (2012).
    [68] M. B. Starr, J. Shi, and X. Wang, "Piezopotential-Driven Redox Reactions at the Surface of Piezoelectric Materials," Angewandte Chemie International Edition 51, 5962-5966 (2012).
    [69] K.-S. Hong, H. Xu, H. Konishi, and X. Li, "Direct Water Splitting Through Vibrating Piezoelectric Microfibers in Water," The Journal of Physical Chemistry Letters 1, 997-1002 (2010).
    [70] K.-S. Hong, H. Xu, H. Konishi, and X. Li, "Piezoelectrochemical Effect: A New Mechanism for Azo Dye Decolorization in Aqueous Solution through Vibrating Piezoelectric Microfibers," The Journal of Physical Chemistry C 116, 13045-13051 (2012).
    [71] H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, and Z. L. Wang, "Enhanced Ferroelectric-Nanocrystal-Based Hybrid Photocatalysis by Ultrasonic-Wave-Generated Piezophototronic Effect," Nano Letters 15, 2372-2379 (2015).
    [72] X. Xue, W. Zang, P. Deng, Q. Wang, L. Xing, Y. Zhang, and Z. L. Wang, "Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires," Nano Energy 13, 414-422 (2015).
    [73] L. Wang, S. Liu, Z. Wang, Y. Zhou, Y. Qin, and Z. L. Wang, "Piezotronic Effect Enhanced Photocatalysis in Strained Anisotropic ZnO/TiO2 Nanoplatelets via Thermal Stress," ACS Nano 10, 2636-2643 (2016).
    [74] C.-H. Kuo, "ZnSnN2 Fabrication Using Combinatorial Reactive Sputtering and its Study of Piezo-Related Properties," National Cheng Kung University, Master's Thesis, 2016.
    [75] Z. Chen, H. N. Dinh, and E. Miller, "Photoelectrochemical water splitting: standards, experimental methods, and protocols," 126 (2013).

    無法下載圖示 校內:2019-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE