| 研究生: |
許桉榤 Hsu, An-Jie |
|---|---|
| 論文名稱: |
高效能磁控濺鍍製備正交晶系ZnSnN2於摻氟氧化錫玻璃基板並利用形貌控制提升其光觸媒及壓電相關性質 Enhancement of Photocatalytic and Piezo-related Properties of Orthorhombic ZnSnN2 Grown on FTO Through Morphology Control Using Combinatorial Magnetron Sputtering |
| 指導教授: |
張高碩
Chang, Kao-Shuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | ZnSnN2 、高效能磁控濺鍍 、形貌控制 、光觸媒/壓電/壓光電性質 |
| 外文關鍵詞: | Orthorhombic ZnSnN2, nanocolumn, morphology control, composition spread, combinatorial magnetron sputtering, piezotronic / piezophototronic effects, photocatalysis / piezophotocatalysis |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
ZnSnN2 是近年來開始被討論的三元氮化物。根據文獻,ZnSnN2之能隙約為2電子伏特,可以有效地利用可見光在光催化的應用上。另外,其耐酸鹼之性質可用在較險惡的環境下正常發揮其壓電和光催化之特性。此外,由於其不對稱晶格使其有壓電相關性質,能進一步提升光催化效能。在環保意識日益上昇之下,其壓光電性質可望成為新一代綠色材料。
本研究中,高效能磁控濺鍍製備Sn3N4摻雜Zn原子合成出正交晶系ZnSnN2於摻氟氧化錫玻璃基板,以及利用形貌控制提升其光觸媒及壓電相關性質,透過XRD,SEM,SIMS,UV-vis, I-V 特徵圖,及光催化效應來研究其光觸媒及壓電相關性質。
未來工作部分,將進一步提升其光觸媒及壓電相關性質,並利用在製作光感測器和壓力感測器,亦或是運用在分解有機污染物的原件上。
Fabrication of the ternary nitrides (ZnSnN2, ZTN) is full of challenges due to its high formation energies and limited chemical potential regions.
In the current study, well-aligned ZTN nanocolumns on the FTO substrate were successfully synthesized using combinatorial magnetron sputtering through the Zn-Sn3N4 composition spreads and morphology control. . We found that Location 1 and 2 on the Zn-Sn3N4 composition spread exhibited the excellent crystallinity of orthorhombic (Pna21) ZnSnN2 and the promising nanocolumns structure. Orthorhombic structures and growth direction of ZTN were ascertained from XRD patterns through the deconvolution of the peak at approximately 33° and locked coupled mode, respectively. The band gap of ZTN extracted from the UV-vis spectrum further supported the successful fabrication of orthorhombic ZTN. The asymmetric I-V characteristics and Schottky barrier height variation as a function of pressures suggested the piezotronic and piezophototronic effects. In addition, the piezotronic / piezophototronic enhanced photodegradation of methylene blue (MB) was observed, in which the •OH and O2•- radicals were ascertained to be responsible for the degradation from the scavenger experiment.
Key words: Orthorhombic ZnSnN2, nanocolumn, morphology control, composition spread, combinatorial magnetron sputtering, piezotronic / piezophototronic effects, photocatalysis / piezophotocatalysis.
[1] Z. L. Wang, "Piezotronic and Piezophototronic Effects," The Journal of Physical Chemistry Letters 1, 1388-1393 (2010).
[2] M. B. Starr and X. Wang, "Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials," Sci Rep 3, 2160 (2013).
[3] Z. Guo, H. Li, L. Zhou, D. Zhao, Y. Wu, Z. Zhang, W. Zhang, C. Li, and J. Yao, "Large-scale horizontally aligned ZnO microrod arrays with controlled orientation, periodic distribution as building blocks for chip-in piezo-phototronic LEDs," Small 11, 438-445 (2015).
[4] W. Deng, L. Jin, B. Zhang, Y. Chen, L. Mao, H. Zhang, and W. Yang, "A flexible field-limited ordered ZnO nanorod-based self-powered tactile sensor array for electronic skin," Nanoscale 8, 16302-16306 (2016).
[5] X. Guo, Y. Fu, D. Hong, B. Yu, H. He, Q. Wang, L. Xing, and X. Xue, "High-efficiency sono-solar-induced degradation of organic dye by the piezophototronic/photocatalytic coupling effect of FeS/ZnO nanoarrays," Nanotechnology 27, 375704 (2016).
[6] X. Liu, X. Yang, G. Gao, Z. Yang, H. Liu, Q. Li, Z. Lou, G. Shen, L. Liao, C. Pan, and Z. Lin Wang, "Enhancing Photoresponsivity of Self-Aligned MoS2 Field-Effect Transistors by Piezo-Phototronic Effect from GaN Nanowires," ACS Nano 10, 7451-7457 (2016).
[7] J. Zhou, P. Fei, Y. Gu, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, "Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires," Nano Lett 8, 3973-3977 (2008).
[8] L. Zhu, L. Wang, F. Xue, L. Chen, J. Fu, X. Feng, T. Li, and Z. L. Wang, "Piezo-Phototronic Effect Enhanced Flexible Solar Cells Based on n-ZnO/p-SnS Core-Shell Nanowire Array," Adv Sci (Weinh) 4, 1600185 (2017).
[9] H. K. Zhong, J. Xia, F. C. Wang, H. S. Chen, H. Z. G. Wu, and S. S. Lin, "Graphene-Piezoelectric Material Heterostructure for Harvesting Energy from Water Flow," Adv. Funct. Mater. 27, 1604226-n/a (2017).
[10] R. R. Bao, C. F. Wang, L. Dong, R. M. Yu, K. Zhao, Z. L. Wang, and C. F. Pan, "Flexible and Controllable Piezo-Phototronic Pressure Mapping Sensor Matrix by ZnO NW/p-Polymer LED Array," Adv. Funct. Mater. 25, 2884-2891 (2015).
[11] T. Qi, I. Grinberg, J. W. Bennett, Y. H. Shin, A. M. Rappe, K. L. Yeh, and K. A. Nelson, presented at the 2010 DoD High Performance Computing Modernization Program Users Group Conference, 2010 (unpublished).
[12] M. Khalid, M. Shoaib, and A. A. Khan, "Strontium doped lead zirconate titanate ceramics: study of calcination and sintering process to improve piezo effect," J Nanosci Nanotechnol 11, 5440-5445 (2011).
[13] J. Y. Chang, M. Domnner, C. Chang, and L. W. Lin, "Piezoelectric nanofibers for energy scavenging applications," Nano Energy 1, 356-371 (2012).
[14] X. Chen, S. Guo, J. Li, G. T. Zhang, M. Lu, and Y. Shi, "Flexible piezoelectric nanofiber composite membranes as high performance acoustic emission sensors," Sensors and Actuators a-Physical 199, 372-378 (2013).
[15] P. K. Panda and B. Sahoo, "PZT to Lead Free Piezo Ceramics: A Review," Ferroelectrics 474, 128-143 (2015).
[16] Q. Li, J. X. Wei, J. R. Cheng, and J. G. Chen, "High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics," Journal of Materials Science 52, 229-237 (2017).
[17] V. Chang, H. Rojas, and J. Jorge, "Piezoelectric and thermoelectric response of cuprous oxide, Cu2O," Sensors and Actuators A: Physical 37-38, 375-378 (1993).
[18] A. Kołodziejczak-Radzimska and T. Jesionowski, "Zinc Oxide—From Synthesis to Application: A Review," Materials 7 (2014).
[19] E. S. Nour, A. Bondarevs, P. Huss, M. Sandberg, S. Gong, M. Willander, and O. Nur, "Low-Frequency Self-Powered Footstep Sensor Based on ZnO Nanowires on Paper Substrate," Nanoscale Res Lett 11, 156 (2016).
[20] X. Li, M. Chen, R. Yu, T. Zhang, D. Song, R. Liang, Q. Zhang, S. Cheng, L. Dong, A. Pan, Z. L. Wang, J. Zhu, and C. Pan, "Enhancing Light Emission of ZnO-Nanofilm/Si-Micropillar Heterostructure Arrays by Piezo-Phototronic Effect," Adv Mater (2015).
[21] Z. L. Wang, R. S. Yang, J. Zhou, Y. Qin, C. Xu, Y. F. Hu, and S. Xu, "Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics," Materials Science & Engineering R-Reports 70, 320-329 (2010).
[22] Y. Xia, J. Wang, R. S. Chen, D. L. Zhou, and L. Xiang, "A Review on the Fabrication of Hierarchical ZnO Nanostructures for Photocatalysis Application," Crystals 6, 148 (2016).
[23] M. K. Lo, S. Y. Lee, and K. S. Chang, "Study of ZnSnO3-Nanowire Piezophotocatalyst Using Two-Step Hydrothermal Synthesis," Journal of Physical Chemistry C 119, 5218-5224 (2015).
[24] Y. Y. Choi, H. K. Kim, H. W. Koo, T. W. Kim, and S. N. Lee, "Flexible ZnSnO3/Ag/ZnSnO3 multilayer electrodes grown by roll-to-roll sputtering on flexible polyethersulfone substrates," Journal of Vacuum Science & Technology A 29, 061502 (2011).
[25] J. Y. Son, G. Lee, M. H. Jo, H. Kim, H. M. Jang, and Y. H. Shin, "Heteroepitaxial ferroelectric ZnSnO3 thin film," J. Am. Chem. Soc. 131, 8386-8387 (2009).
[26] J. M. Wu, C. Xu, Y. Zhang, Y. Yang, Y. Zhou, and Z. L. Wang, "Flexible and transparent nanogenerators based on a composite of lead-free ZnSnO3 triangular-belts," Adv Mater 24, 6094-6099 (2012).
[27] J. M. Wu, C. Y. Chen, Y. Zhang, K. H. Chen, Y. Yang, Y. Hu, J. H. He, and Z. L. Wang, "Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire," ACS Nano 6, 4369-4374 (2012).
[28] B. E. Foutz, O. Ambacher, M. J. Murphy, V. Tilak, and L. F. Eastman, "Polarization Induced Charge at Heterojunctions of the III–V Nitrides and Their Alloys," physica status solidi (b) 216, 415-418 (1999).
[29] N. Gogneau, N. Jamond, P. Chretien, F. Houze, E. Lefeuvre, and M. Tchernycheva, "From single III-nitride nanowires to piezoelectric generators: New route for powering nomad electronics," Semiconductor Science and Technology 31, 103002 (2016).
[30] T. Pavloudis, J. Kioseoglou, T. Karakostas, and P. Komninou, "Ordered structures in III-Nitride ternary alloys," Computational Materials Science 118, 22-31 (2016).
[31] R. Agrawal and H. D. Espinosa, "Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation," Nano Lett 11, 786-790 (2011).
[32] Y. Y. Chen, D. J. Yuan, M. C. Yang, D. L. Wang, and X. H. Sun, "High efficiency GaN LEDs with submicron-scale 2Dperiodic structures directly fabricated by laser interference ablation," Optics and Laser Technology 90, 211-215 (2017).
[33] J. Dzuba, G. Vanko, M. Drzik, I. Ryger, V. Kutis, J. Zehetner, and T. Lalinsky, "AlGaN/GaN diaphragm-based pressure sensor with direct high performance piezoelectric transduction mechanism," Appl. Phys. Lett. 107, 122102 (2015).
[34] A. Osinsky, V. Fuflyigin, L. D. Zhu, A. B. Goulakov, J. W. Graff, and E. F. Schubert, presented at the Proceedings 2000 IEEE/ Cornell Conference on High Performance Devices (Cat. No.00CH37122), 2000 (unpublished).
[35] S. Chen, P. Narang, H. A. Atwater, and L. W. Wang, "Phase stability and defect physics of a ternary ZnSnN2 semiconductor: first principles insights," Adv Mater 26, 311-315 (2014).
[36] T. Endo, Y. Sato, H. Takizawa, and M. Shimada, "High-pressure synthesis of new compounds, ZnSiN2 and ZnGeN2 with distorted wurtzite structure," Journal of Materials Science Letters 11, 424-426 (1992).
[37] T. Cloitre, A. Sere, and R. L. Aulombard, "Epitaxial growth of ZnSiN2 single-crystalline films on sapphire substrates," Superlattices and Microstructures 36, 377-383 (2004).
[38] B. P. Cook, H. O. Everitt, I. Avrutsky, A. Osinsky, A. Cai, and J. F. Muth, "Refractive indices of ZnSiN2 on r-plane sapphire," Appl. Phys. Lett. 86, 121906 (2005).
[39] M. Maunaye and J. Lang, "Preparation et proprietes de ZnGeN2," Mater. Res. Bull. 5, 793-796 (1970).
[40] S. Kikkawa and H. Morisaka, "RF-sputter deposition of Zn–Ge nitride thin films," Solid State Commun. 112, 513-515 (1999).
[41] T. Misaki, A. Wakahara, H. Okada, and A. Yoshida, "Epitaxial growth and characterization of ZnGeN2 by metalorganic vapor phase epitaxy," J. Cryst. Growth 260, 125-129 (2004).
[42] A. Punya, W. R. L. Lambrecht, and M. van Schilfgaarde, "Quasiparticle band structure of Zn-IV-N2 compounds," Physical Review B 84, 165204 (2011).
[43] P. Ziesche, S. Kurth, and J. P. Perdew, "Density functionals from LDA to GGA," Computational Materials Science 11, 122-127 (1998).
[44] P. C. Quayle, K. L. He, J. Shan, and K. Kash, "Synthesis, lattice structure, and band gap of ZnSnN2," Mrs Communications 3, 135-138 (2013).
[45] S. W. Jang, T. Kotani, H. Kino, K. Kuroki, and M. J. Han, "Quasiparticle self-consistent GW study of cuprates: electronic structure, model parameters, and the two-band theory for Tc," Scientific Reports 5, 12050 (2015).
[46] N. Feldberg, J. D. Aldous, W. M. Linhart, L. J. Phillips, K. Durose, P. A. Stampe, R. J. Kennedy, D. O. Scanlon, G. Vardar, R. L. Field, T. Y. Jen, R. S. Goldman, T. D. Veal, and S. M. Durbin, "Growth, disorder, and physical properties of ZnSnN2," Appl. Phys. Lett. 103, 042109 (2013).
[47] P. C. Quayle, E. W. Blanton, A. Punya, G. T. Junno, K. L. He, L. Han, H. P. Zhao, J. Shan, W. R. L. Lambrecht, and K. Kash, "Charge-neutral disorder and polytypes in heterovalent wurtzite-based ternary semiconductors: The importance of the octet rule," Physical Review B 91, 205207 (2015).
[48] L. Lahourcade, N. C. Coronel, K. T. Delaney, S. K. Shukla, N. A. Spaldin, and H. A. Atwater, "Structural and optoelectronic characterization of RF sputtered ZnSnN2," Adv Mater 25, 2562-2566 (2013).
[49] A. N. Fioretti, A. Zakutayev, H. Moutinho, C. Melamed, J. D. Perkins, A. G. Norman, M. Al-Jassim, E. S. Toberer, and A. C. Tamboli, "Combinatorial insights into doping control and transport properties of zinc tin nitride," Journal of Materials Chemistry C 3, 11017-11028 (2015).
[50] A. N. Fioretti, E. S. Toberer, A. Zakutayev, and A. C. Tamboli, presented at the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 2015 (unpublished).
[51] T. Veal, N. Feldberg, N. Quackenbush, W. Linhart, D. Scanlon, and S. Durbin, "Band Gap Dependence on Cation Disorder in ZnSnN2 Solar Absorber," Advanced energy materials 5, 1501462 (2015).
[52] F. Deng, H. Cao, L. Liang, J. Li, J. Gao, H. Zhang, R. Qin, and C. Liu, "Determination of the basic optical parameters of ZnSnN2," Opt. Lett. 40, 1282-1285 (2015).
[53] R. F. Qin, H. T. Cao, L. Y. Liang, Y. F. Xie, F. Zhuge, H. L. Zhang, J. H. Gao, K. Javaid, C. C. Liu, and W. Z. Sun, "Semiconducting ZnSnN2 thin films for Si/ZnSnN2 p-n junctions," Appl. Phys. Lett. 108, 142104 (2016).
[54] F. Kawamura, N. Yamada, M. Imai, and T. Taniguchi, "Synthesis of ZnSnN2 crystals via a high-pressure metathesis reaction," Crystal Research and Technology 51, 220-224 (2016).
[55] S. Bai, J. Jiang, Q. Zhang, and Y. Xiong, "Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations," Chem Soc Rev 44, 2893-2939 (2015).
[56] K. Nakata and A. Fujishima, "TiO2 photocatalysis: Design and applications," Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13, 169-189 (2012).
[57] A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature 238, 37-38 (1972).
[58] I. K. Punithavathy, J. P. Richard, S. J. Jeyakumar, M. Jothibas, and P. Praveen, "Photodegradation of methyl violet dye using ZnO nanorods," Journal of Materials Science-Materials in Electronics 28, 2494-2501 (2017).
[59] J. Fang, J. Xu, J. Chen, X. Huang, and X. Wang, "Enhanced photocatalytic activity of molecular imprinted nano α-Fe2O3 by hydrothermal synthesis using methylene blue as structure-directing agent," Colloids and Surfaces A: Physicochemical and Engineering Aspects 508, 124-134 (2016).
[60] X. X. Ji, C. C. Bai, Q. H. Zhao, and A. H. Wang, "Facile synthesis of porous SnO2 quasi-nanospheres for photocatalytic degradation of Rhodamine B," Materials Letters 189, 58-61 (2017).
[61] X. Chen and C. Burda, "The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials," J. Am. Chem. Soc. 130, 5018-5019 (2008).
[62] A. P. Hui, J. Z. Ma, J. L. Liu, Y. Bao, and J. Zhang, "Morphological evolution of Fe doped sea urchin-shaped ZnO nanoparticles with enhanced photocatalytic activity," Journal of Alloys and Compounds 696, 639-647 (2017).
[63] P. Senthil Kumar, M. Selvakumar, S. Ganesh Babu, S. Induja, and S. Karuthapandian, "CuO/ZnO nanorods: An affordable efficient p-n heterojunction and morphology dependent photocatalytic activity against organic contaminants," Journal of Alloys and Compounds 701, 562-573 (2017).
[64] Y. Liu, Y. Zhang, Q. Yang, S. M. Niu, and Z. L. Wang, "Fundamental theories of piezotronics and piezo-phototronics," Nano Energy 14, 257-275 (2015).
[65] Z. L. Wang, "Nanopiezotronics," Advanced Materials 19, 889-892 (2007).
[66] Z. L. Wang, "Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics," Nano Today 5, 540-552 (2010).
[67] Z. L. Wang, "Progress in piezotronics and piezo-phototronics," Adv Mater 24, 4632-4646 (2012).
[68] M. B. Starr, J. Shi, and X. Wang, "Piezopotential-Driven Redox Reactions at the Surface of Piezoelectric Materials," Angewandte Chemie International Edition 51, 5962-5966 (2012).
[69] K.-S. Hong, H. Xu, H. Konishi, and X. Li, "Direct Water Splitting Through Vibrating Piezoelectric Microfibers in Water," The Journal of Physical Chemistry Letters 1, 997-1002 (2010).
[70] K.-S. Hong, H. Xu, H. Konishi, and X. Li, "Piezoelectrochemical Effect: A New Mechanism for Azo Dye Decolorization in Aqueous Solution through Vibrating Piezoelectric Microfibers," The Journal of Physical Chemistry C 116, 13045-13051 (2012).
[71] H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, and Z. L. Wang, "Enhanced Ferroelectric-Nanocrystal-Based Hybrid Photocatalysis by Ultrasonic-Wave-Generated Piezophototronic Effect," Nano Letters 15, 2372-2379 (2015).
[72] X. Xue, W. Zang, P. Deng, Q. Wang, L. Xing, Y. Zhang, and Z. L. Wang, "Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires," Nano Energy 13, 414-422 (2015).
[73] L. Wang, S. Liu, Z. Wang, Y. Zhou, Y. Qin, and Z. L. Wang, "Piezotronic Effect Enhanced Photocatalysis in Strained Anisotropic ZnO/TiO2 Nanoplatelets via Thermal Stress," ACS Nano 10, 2636-2643 (2016).
[74] C.-H. Kuo, "ZnSnN2 Fabrication Using Combinatorial Reactive Sputtering and its Study of Piezo-Related Properties," National Cheng Kung University, Master's Thesis, 2016.
[75] Z. Chen, H. N. Dinh, and E. Miller, "Photoelectrochemical water splitting: standards, experimental methods, and protocols," 126 (2013).
校內:2019-08-31公開