簡易檢索 / 詳目顯示

研究生: 吳依庭
Wu, Yi-Ting
論文名稱: 親兩媒含氟共聚高分子之合成及其於鋰離子電池水性黏著劑之應用
Synthesis of Amphiphilic Fluorinated Copolymer used as Water-Based Binder for Lithium-Ion Batteries
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 77
中文關鍵詞: 鋰離子電池水性黏著劑無乳化劑乳化聚合法
外文關鍵詞: Lithium-ion battery, water-based binder, surfactant-free emulsion polymerization
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功地使用無乳化劑乳化聚合法將親水單體和含氟單體聚合,製備出Poly(PEGMA-co-PFHEMA)高分子顆粒分散在水相中,形成親兩媒含氟共聚高分子乳膠溶液,並將其應用於鋰離子電池之電極水性黏著劑。由FT-IR和1H NMR鑑定共聚高分子的分子結構;TEM與DLS觀察親兩媒含氟共聚高分子顆粒球體粒徑約200 nm;從TGA結果得知共聚高分子的熱裂解溫度皆在200 ℃以上,具有熱穩定性;另外,藉由CV與半電池性能測試,水性黏著劑具有電化學穩定性和較小的極化現象,因此,在20C快速放電下與商用黏著劑PVdF相比具有更高的電容量,保有接近63.1 mAhg-1。在循環壽命測試中,1C/1C長效半電池於150次循環充放電的測試後,庫倫效率達98%與維持140 mAhg-1放電電容量。

    Using hydrophilic monomer and fluorinated monomer copolymerize into the latex particles via the surfactant-free emulsion polymerization, resulting in a water-based binder for lithium ion-battery, that is, poly(PEGMA-co-PFHEMA). It has been accomplished and characterized with FT-IR and 1H NMR. The spheric particle size of amphiphilic fluorinated copolymer aproximated 200 nm by TEM and DLS analysis. From the TGA and CV analyses, we found that the binder not only has great thermal stability but also shows good electrochemical stability. For battery application, the specific discharge capacity of half-cell using the new water-based binder possess is 63.1 mAhg-1 at a discharge rate of 20C. Compared with the commercial standard polyvinylidene fluoride, the as-synthesized binder presents a superior electrochemical performance. In cycle-life test, it can reach 98% coulombic efficiency and keep 140 mAhg-1 capacity in 1C/1C charge-discharge rate after 150 cycles test.

    摘要.................................................... I Abstract............................................... II 誌謝.................................................... IX 目錄.................................................... X 表目錄................................................... XV 圖目錄................................................... XVI 第壹章 緒論................................................1 1-1 簡介..................................................1 1-2 文獻回顧...............................................4 1-2-1 鋰離子電池介紹........................................4 1-2-2 鋰離子電池基本原理.....................................5 1-2-3 正極材料.............................................7 1-2-4 黏著劑(binder).......................................8 1-2-4-1 聚偏氟乙烯(polyvinylidene fluoride,PVdF)............8 1-2-4-2 聚醯亞胺(Polyimide,PI)..............................9 1-2-4-3 苯乙烯-丁二烯橡膠(styrene-butadiene rubber, SBR).....10 1-2-4-4 水性羧甲基纖維素(sodium carboxymethyl cellulose,CMC).11 1-2-4-5 玻璃轉移溫度(Tg)對黏著劑的影響........................12 1-2-5 聚乙二醇(polyethylene oxide,PEO).....................14 1-2-6 導電鋰鹽.............................................16 1-2-7 塑化劑...............................................17 1-2-8 隔離膜...............................................19 1-2-9 固體電解質介面膜(solid electrolyte interface,SEI)......20 1-2-10 無乳化劑乳化聚合法(surfactant-free emulsion polymerization,SFEP).....................................22 第貳章 研究方向.............................................24 2-1 研究動機...............................................24 2-2 研究架構...............................................25 第參章 實驗................................................26 3-1 實驗藥品與材料..........................................26 3-2 儀器設備...............................................27 3-3 樣品製備...............................................28 3-3-1 親兩媒含氟共聚高分子乳膠溶液製備..........................28 3-3-2 正極極片製作..........................................30 3-3-3 鈕扣型電池組裝........................................31 3-4 實驗鑑定與分析..........................................32 3-4-1 傅立葉轉換紅外線光譜(FT-IR)............................32 3-4-2 高解析核磁共振光譜儀(1H-NMR)...........................32 3-4-3 穿透式電子顯微鏡(Transmission Electron Microscope,TEM) ....................................................32 3-4-4 動態光散射粒徑分析儀(Dymanic Light Scattering,DLS).....33 3-4-5 熱重分析儀(Thermogravimetric Analysis,TGA)...........33 3-4-6 微差式掃描熱卡計(Differential Scanning Calorimeter,DSC) ....................................................34 3-4-7 線性掃描伏安法(Linear Sweep Voltammetry,LSV)..........34 3-4-8 超高解析場發射掃描式電子顯微鏡(HR-FESEM).................34 3-4-9 循環伏安法(Cyclic voltammogram,CV)...................35 3-4-10 電池效能與長效測試方法與步驟............................36 3-4-11 交流阻抗(AC impedance)..............................36 3-4-12 附著力測試(Adhesion test)...........................38 第肆章 結果與討論............................................39 4-1 親兩媒含氟共聚高分子Poly(PEGMA-co-PFHEMA)之合成與鑑定.......39 4-1-1 傅立葉轉換紅外線光譜(FT-IR)............................39 4-1-2 核磁共振光譜(1H-NMR)..................................41 4-2 親兩媒含氟共聚高分子Poly(PEGMA-co-PFHEMA)之外觀型態分析.....44 4-2-1 穿透式電子顯微鏡(TEM)..................................44 4-2-2 動態光散射粒徑分析儀(DLS)..............................46 4-3 熱重分析(TGA)..........................................47 4-4 DSC熱轉移性質(DSC Thermal transition property).........49 4-5 線性掃描伏安法(Linear Sweep Voltammetry,LSV)............51 4-6 掃描式電子顯微鏡(SEM)....................................52 4-7 循環伏安法(CV).........................................53 4-8 半電池性能測試..........................................57 4-8-1 半電池不同放電速率測試 ..................................57 4-9 半電池長效測試..........................................61 4-9-1 半電池長效...........................................61 4-9-2 電化學交流阻抗分析.....................................64 4-10 附著力測試............................................69 第伍章 結論................................................70 第陸章 參考文獻.............................................72

    [1] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, vol. 414, pp. 359-367, 11/15/print 2001.
    [2] 許家興, "電動車電池類型與電池基礎介紹," 2009.
    [3] M. S. Whittingham, "Electrical Energy Storage and Intercalation Chemistry," Science, vol. 192, pp. 1126-1127, 1976.
    [4] 林振華 and 林振富, "充電式鋰離子電池-材料與應用," 全華圖書股份有限公司, 2002.
    [5] P. B. Kirchhoff, "XXIV.—On chemical analysis by spectrum-observations," Quarterly Journal of the Chemical Society vol. 13, pp. 270-289, 1861.
    [6] U. S. P. S. Basu, vol. 4, p. 125, 1983.
    [7] M.M. Thackeray, W.I.F. David, P.G. Bruce, and J. B. Goodenough, "Lithium insertion into manganese spinels," Materials Research Bulletin, vol. 18, pp. 461-472, 1983.
    [8] C. Sun, S. Rajasekhara, J. B. Goodenough, and F. Zhou, "Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode," Journal of the American Chemical Society, vol. 133, pp. 2132-2135, 2011.
    [9] H. Abe, T. Murai, and K. Zaghib, "Vapor-grown carbon fiber anode for cylindrical lithium ion rechargeable batteries," Journal of Power Sources, vol. 77, pp. 110-115, 1999.
    [10] M. Armand, D. W. Murphy, J. Broadhead, and B. C. H. Steele, "Materials for advanced batteries," Plenum press, New York, p. 145, 1980.
    [11] B. Dunn, H. Kamath, and J.-M. Tarascon, " Electrical energy storage for the grid: a battery of choices," Science, vol. 334, pp. 928-935, 2011.
    [12] A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, " Phospho-olivines as positive electrode materials for rechargeable lithium batteries," Journal of the Electrochemical Society, vol. 144, pp. 1188-1194, 1997.
    [13] A. M. Christian M. Julien , Karim Zaghib and Henri Groult "Comparative issues of cathode materials for Li-ion batteries," Inorganics vol. 2, pp. 132-154, 2014.
    [14] K. Prasanna, T. Subburaj, Y. N. Jo, W. J. Lee, and C. W. Lee, "Environment-friendly cathodes using biopolymer chitosan with enhanced electrochemical behavior for use in lithium ion batteries," ACS Appl Mater Interfaces, vol. 7, pp. 7884-90, Apr 22 2015.
    [15] L.-s. Hao, Z.-p. Cai, and W.-s. Li, "Research progress of water-based binder for lithium-ion battery," Chinese Journal of Power Sources, vol. 34, pp. 303-306, 2010.
    [16] T. G. Xu, L. B. Wang, C. Li, and C. N. Ma, "Synthesis and properties of low cost LiFePO4/C cathode material for li-ion battery," Acta Chimica Sinica, vol. 67, p. 2275, 2009.
    [17] L. Chai, Q. Qu, L. Zhang, M. Shen, L. Zhang, and H. Zheng, "Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries," Electrochimica Acta, vol. 105, pp. 378-383, 2013.
    [18] Z. H. Liu Xin, Xie Jingying, Tang Weiping, Pan Yanlin, Lu Pengpeng, "Polymer binders for high capacity electrode of lithium-ion battery," Progress in Chemistry, vol. 25, pp. 1401-1410, 2013.
    [19] T. M. Bogert and R. R. Renshaw, J. Am. Chem. Soc., vol. 30, p. 1140, 1908.
    [20] 范誠, "變化多端的苯乙烯-丁二烯共聚物," 科學研習 pp. 13-19, 2015.
    [21] R. Zhang, X. Yang, D. Zhang, H. Qiu, Q. Fu, H. Na, et al., "Water soluble styrene butadiene rubber and sodium carboxyl methyl cellulose binder for ZnFe2O4 anode electrodes in lithium ion batteries," Journal of Power Sources, vol. 285, pp. 227-234, 2015.
    [22] Z. Wang, N. Dupré, A.-C. Gaillot, B. Lestriez, J.-F. Martin, L. Daniel, et al., "CMC as a binder in LiNi0.4Mn1.6O4 5 V cathodes and their electrochemical performance for Li-ion batteries," Electrochimica Acta, vol. 62, pp. 77-83, 2012.
    [23] J. Drofenik, M. Gaberscek, R. Dominko, F. W. Poulsen, M. Mogensen, S. Pejovnik, et al., "Cellulose as a binding material in graphitic anodes for Li ion batteries: a performance and degradation study," Electrochimica Acta, vol. 48, pp. 883-889, 2003.
    [24] S. F. Lux, F. Schappacher, A. Balducci, S. Passerini, and M. Winter, "Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries," Journal of the Electrochemical Society, vol. 157, pp. A320-A325, 2010.
    [25] N. Ding, J. Xu, Y. Yao, G. Wegner, I. Lieberwirth, and C. Chen, "Improvement of cyclability of Si as anode for Li-ion batteries," Journal of Power Sources, vol. 192, pp. 644–651, 2009.
    [26] B. Lestriez, S. Bahri, I. Sandu, L. Roue, and D. Guyomard, "On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries," Electrochemistry Communications, vol. 9, pp. 2801–2806, 2007.
    [27] I. Doberdò, N. Löffle, N. Laszczynski, D. Cericola, N. Penazzi, S. Bodoardo, et al., "Enabling aqueous binders for lithium battery cathodes-Carbon coating of aluminum current collector," Journal of Power Sources, vol. 248, pp. 1000-1006, 2014.
    [28] N. Loeffler, T. Kopel, G.-T. Kim, and S. Passerini, "Polyurethane binder for queous processing of Li-ion battery electrodes," Journal of The Electrochemical Society, vol. 162, pp. A2692-A2698, 2015.
    [29] 蔡政欣, "光學膠設計基礎," 工業材料雜誌330期, pp. 115-119, 2014.
    [30] D. E. Fenton, J. M. Parker, and P. V. Wright, "Complexes of alkali metal ions with poly(ethylene oxide)," Polymer, vol. 14, pp. 589-589, 1973.
    [31] P. V. Wright, "Electrical conductivity in ionic complexes of poly(ethylene oxide)," British Polymer Journal, vol. 7, pp. 319-327, 1975.
    [32] M. B. Armand, J. M. Chabagno, and M. J. Duclot, "Second international meeting on solid electrolytes, St. Andrews, Scotland, September 20-22. ," 1978.
    [33] M. B. Armand, P. G. Bruce, M. Forsyth, B. Scrosati, and W. Wieczorek, "Polymer electrolytes," Energy Materials, pp. 1-31, 2011.
    [34] M. Winger, A. H. de Vries, and W. F. van Gunsteren, "Force-field dependence of the conformational properties of α,ω-dimethoxypolyethylene glycol," Molecular Physics, vol. 107, pp. 1313–1321, 2009.
    [35] D. Bresser, S. Passerini, and B. Scrosati, "Recent progress and remaining challenges in sulfur-based lithium secondary batteries - a review," Chemical Communications, vol. 49, pp. 10545-10562, 2013.
    [36] V. Aravindan, J. Gnanaraj, S. Madhavi, and H.-K. Liu, "Lithium-ion conducting electrolyte salts for lithium batteries," Chemistry – A European Journal, vol. 17, pp. 14326-14346, 2011.
    [37] C. W. J. Walker, J. D. Cox, and M. Salomon, "Conductivity and electrochemical stability of electrolytes containing organic solvent mixtures with lithium tris(trifluoromethanesulfonyl)methide," Journal of the Electrochemical Society, vol. 143, pp. L80-L82, 1996.
    [38] J. Kalhoff, D. Bresser, M. Bolloli, F. Alloin, J.-Y. Sanchez, and S. Passerini, "Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (co)solvent," ChemSusChem, vol. 7, pp. 2939-2946, 2014.
    [39] V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, "Challenges in the development of advanced Li-ion batteries: a review," Energy & Environmental Science, vol. 4, pp. 3243–3262, 2011.
    [40] K. Xu, "Nonaqueous liquid electrolytes for lithium-based rechargeable batteries," Chemical Reviews, vol. 104, pp. 4303-4418, 2004.
    [41] H. Lee, M. Alcoutlabi, J. V. Watson, and X. Zhang, "Electrospun nanofiber-coated separator membranes for lithium-ion rechargeable batteries," Journal of Applied Polymer Science, vol. 129, pp. 1939-1951, 2013.
    [42] J.-Q. Huang, Q. Zhang, H.-J. Peng, X.-Y. Liu, W.-Z. Qian, and F. Wei, "Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries," Energy & Environmental Science, vol. 7, pp. 347–353, 2014.
    [43] S. S. Zhang, "A review on the separators of liquid electrolyte Li-ion batteries," Journal of Power Sources, vol. 164, pp. 351-364, 2007.
    [44] E. Peled, "The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model," Journal of the Electrochemical Society, vol. 126, pp. 2047-2051, 1979.
    [45] P. Voelker, "Trace degradation analysis of lithium-ion battery components," 2014.
    [46] G. Odian, "Principles of polymerization, 4th edn," John Wiley & Sons, Inc, 2004.
    [47] Y. Ohtsuka, H. Kawaguchi, and Y. Sugi, "Copolymerization of styrene with acrylamide in an emulsifier-free aqueous medium," Journal of Applied Polymer Science, vol. 26, pp. 1637-1647, 1981.
    [48] M. S. Park, "Synthesis of crosslinked poly(methyl methacrylate) beads in emulsifier-free emulsion polymerization," Korea Polymer Journal, vol. 2, pp. 54-60, 1994.
    [49] K. Landfester, R. Rothe, and M. Antonietti, "Convenient synthesis of fluorinated latexes and core-shell structures by miniemulsion polymerization," Macromolecules, vol. 35, pp. 1658-1662, 2002.
    [50] Z. An, W. Tang, C. J. Hawker, and G. D. Stucky, "One-step microwave preparation of well-defined and functionalized polymeric nanoparticles," Journal of the American Chemical Society, vol. 128, pp. 15054-15055, 2006.
    [51] J. Bao and A. Zhang, "Poly(methyl methacrylate) nanoparticles prepared through microwave emulsion polymerization," Journal of Applied Polymer Science, vol. 93, pp. 2815-2820, 2004.
    [52] S. T. Camli, F. Buyukserin, O. Balci, and G. G. Budak, "Size controlled synthesis of sub-100 nm monodisperse poly(methylmethacrylate) nanoparticles using surfactant-free emulsion polymerization," Journal of Colloid and Interface Science, vol. 344, pp. 528–532, 2010.
    [53] P.-Y. Chen, C.-Y. Lee, and B.-S. Jang, "Development of electrode materials of lithium ion battery," 新新季刊第四十二卷第二期, pp. 114-123, 2014.
    [54] G. Qian, L. Wang, Y. Shang, X. He, S. Tang, M. Liu, et al., "Polyimide binder: a facile way to improve safety of lithium ion batteries," Electrochimica Acta, vol. 187, pp. 113-118, 2016.
    [55] H. C. Shin, W. I. Cho, and H. Jang, "Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black," Electrochimica Acta, vol. 52, pp. 1472-1476, 2006.
    [56] X. Li, H. Li, G. Liu, Z. Deng, S. Wu, P. Li, et al., "Magnetite-loaded fluorine-containing polymeric micelles for magnetic resonance imaging and drug delivery," Biomaterials, vol. 33, pp. 3013-3024, 2012.
    [57] Q. Zhang, Q. Wang, X. Zhan, and F. Chen, "Synthesis and performance of novel fluorinated acrylate polymers: preparation and reactivity of short perfluoroalkyl group containing monomers," Industrial & Engineering Chemistry Research, vol. 53, pp. 8026-8034, 2014.
    [58]B. Chieng, N. Ibrahim, W. Yunus, and M. Hussein, "Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets," Polymers, vol. 6, p. 93, 2014.
    [59] S. R. Kunst, L. V. R. Beltrami, H. R. P. Cardoso, M. R. O. Veja, E. K. K. Baldin, T. L. Menezes, et al., "Effect of curing temperature and architectural (monolayer and bilayer) of hybrid films modified with polyethylene glycol for the corrosion protection on tinplate," Materials Research, vol. 17, pp. 1071-1081, 2014.
    [60] Y. Liu, Y. Su, Y. Li, X. Zhao, and Z. Jiang, "Improved antifouling property of PVDF membranes by incorporating an amphiphilic block-like copolymer for oil/water emulsion separation," RSC Advances, vol. 5, pp. 21349-21359, 2015.
    [61] X. Wang, Y. Huang, D. Jia, Z. Guo, D. Ni, and M. Miao, "Preparation and characterization of high-rate and long-cycle LiFePO4/C nanocomposite as cathode material for lithium-ion battery," Journal of Solid State Electrochemistry, vol. 16, pp. 17-24, 2012.
    [62] C.-H. Tsao, C.-H. Hsu, and P.-L. Kuo, "Ionic conducting and surface active binder of poly (ethylene oxide)-block-poly(acrylonitrile) for high power lithium-ion battery," Electrochimica Acta, vol. 196, pp. 41-47, 2016.

    無法下載圖示 校內:2021-08-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE