| 研究生: |
李振業 Lee, Chen-yeh |
|---|---|
| 論文名稱: |
利用親和性鈣離子共沉澱法來純化並鑑定γ-羧基麩氨酸修飾的蛋白質 Identification of Gamma-carboxylated Glu (Gla) Modification on Proteins by Calcium Affinity Co-precipitation Prior to LC-MSMS Analysis |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 親和性鈣離子共沉澱法 、γ-羧基麩氨酸 、第九號凝血因子 |
| 外文關鍵詞: | gamma-carboxylated Glu, calcium affinity co-precipitation, coagulation factor ix |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
麩氨酸上的羧酸化轉譯後修飾對於凝血過程中所參與的蛋白扮演極為重要的角色。於本篇論文中,我們藉由γ-羧基麩氨酸作用區與鈣離子具有高度親和力的生物特性,而開發出一個利用化學沉澱的方法來純化含有γ-羧基麩氨酸修飾的胜肽片段,並稱此方法為親和性鈣離子純化法。此方法對於γ-羧基麩氨酸修飾的胜肽有其專一性的純化作用,實驗結果顯示此純化方法可提高質譜上γ-羧基麩氨酸修飾的胜肽的離子訊號強度十倍以上。於方法中我們額外添加碳酸氫鈉,使其提供碳酸根陰離子基團來提升γ-羧基麩氨酸修飾的胜肽的共沉澱。
我們利用親和性鈣離子共沉澱法,成功在標準的第九號凝血因子蛋白中純化出γ-羧基麩氨酸修飾的胜肽,並於液相層析串聯式質譜儀中鑑定出位於胺基端上的六段胜肽鏈,具有十二個γ-羧基麩氨酸的轉譯後修飾位點。
本方法亦應用於生物樣品的純化。於腹腔中積水樣品,此方法成功地純化出第九號凝血因子蛋白中的γ-羧基麩氨酸修飾胜肽片段,並偵測到三個γ-羧基麩氨酸的轉譯後修飾位點,證實了此法亦可運用生物樣品中蛋白γ-羧基麩氨酸修飾的偵測。
我們進一步應用此方法於具更複雜基質干擾的人類紅血球樣品中凝血因子之偵測,我們在人類紅血球中額外添加18 pmole的第九號凝血因子標準品,以測試此方法是否能運用於高度基質干擾的樣品中,結果顯示成功地在紅血球裡偵測到第九號凝血因子蛋白中的γ-羧基麩氨酸修飾胜肽片段,亦偵測到三個γ-羧基麩氨酸的轉譯後修飾位點,證實了此法亦可使用於高度基質干擾的蛋白樣品中。
Carboxylation at the gamma position of glutamic acid (Gla) is an important post-translational modification required for the activity of vitamin K-dependent (VKD) proteins. Detection and identification of Gla modifications using mass spectrometry, however, is difficult due to many problems including ion suppression effects by negative charges. We developed a method using calcium affinity precipitation method to enrich the gamma-carboxyglutamic acid (Gla) peptides which can be subsequently detected by electrospray-mass spectrometry.
In this approach, we used calcium ion to co-precipitate gamma-carboxyglutamate paptides which can form stable six-ring neutral complexes with calcium ion via its two carboxylic acid functional groups. This approach had low nonspecific bindings with the non-Gla modified peptides, and resulted in a 10-fold of signal enhancement. In addition to calcium ion, NaHCO3 was added to increase the recovery yield for Gla peptides.
Our results indicate that the 12 carboxylation sites at the N-terminal region of coagulation Factor IX can be well characterized by LC-MS/MS using the proposed method for enrichment. Moreover, the method can be successfully applied to identify three carboxylation sites on the endogenous coagulation Factor IX in human ascites fluid. For highly complicated sample matrix like human plasma, we spiked 18 pmole Factor IX standards in the 60μL human plasma and used this method to precipitate Factor IX. The result indicated that the three carboxylation sites were able to be successfully identified.
1. Franchini, M.; Gandini, G.; Di Paolantonio, T.; Mariani, G., Acquired hemophilia A: a concise review. American journal of hematology 2005, 80 (1), 55-63.
2. Herzog, R. W.; Yang, E. Y.; Couto, L. B.; Hagstrom, J. N.; Elwell, D.; Fields, P. A.; Burton, M.; Bellinger, D. A.; Read, M. S.; Brinkhous, K. M.; Podsakoff, G. M.; Nichols, T. C.; Kurtzman, G. J.; High, K. A., Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nature medicine 1999, 5 (1), 56-63.
3. Giangrande, P., Haemophilia B: Christmas disease. Expert opinion on pharmacotherapy 2005, 6 (9), 1517-24.
4. Yoshitake, S.; Schach, B. G.; Foster, D. C.; Davie, E. W.; Kurachi, K., Nucleotide sequence of the gene for human factor IX (antihemophilic factor B). Biochemistry 1985, 24 (14), 3736-50.
5. Anson, D. S.; Choo, K. H.; Rees, D. J.; Giannelli, F.; Gould, K.; Huddleston, J. A.; Brownlee, G. G., The gene structure of human anti-haemophilic factor IX. The EMBO journal 1984, 3 (5), 1053-60.
6. Orlova, N. A.; Kovnir, S. V.; Vorobiev, II; Gabibov, A. G., Coagulation Factor IX for Hemophilia B Therapy. Acta naturae 2012, 4 (2), 62-73.
7. Stenina, O.; Pudota, B. N.; McNally, B. A.; Hommema, E. L.; Berkner, K. L., Tethered processivity of the vitamin K-dependent carboxylase: factor IX is efficiently modified in a mechanism which distinguishes Gla's from Glu's and which accounts for comprehensive carboxylation in vivo. Biochemistry 2001, 40 (34), 10301-9.
8. Aktimur, A.; Gabriel, M. A.; Gailani, D.; Toomey, J. R., The factor IX gamma-carboxyglutamic acid (Gla) domain is involved in interactions between factor IX and factor XIa. The Journal of biological chemistry 2003, 278 (10), 7981-7.
9. Schmidt, A. E.; Bajaj, S. P., Structure-function relationships in factor IX and factor IXa. Trends in cardiovascular medicine 2003, 13 (1), 39-45.
10. Gillis, S.; Furie, B. C.; Furie, B.; Patel, H.; Huberty, M. C.; Switzer, M.; Foster, W. B.; Scoble, H. A.; Bond, M. D., gamma-Carboxyglutamic acids 36 and 40 do not contribute to human factor IX function. Protein science : a publication of the Protein Society 1997, 6 (1), 185-96.
11. Handford, P. A.; Baron, M.; Mayhew, M.; Willis, A.; Beesley, T.; Brownlee, G. G.; Campbell, I. D., The first EGF-like domain from human factor IX contains a high-affinity calcium binding site. The EMBO journal 1990, 9 (2), 475-80.
12. Lenting, P. J.; Christophe, O. D.; Maat, H.; Rees, D. J.; Mertens, K., Ca2+ binding to the first epidermal growth factor-like domain of human blood coagulation factor IX promotes enzyme activity and factor VIII light chain binding. The Journal of biological chemistry 1996, 271 (41), 25332-7.
13. Walsh, C. T.; Garneau-Tsodikova, S.; Gatto, G. J., Jr., Protein posttranslational modifications: the chemistry of proteome diversifications. Angewandte Chemie 2005, 44 (45), 7342-72.
14. Crow, T.; Xue-Bian, J. J., Proteomic analysis of post-translational modifications in conditioned Hermissenda. Neuroscience 2010, 165 (4), 1182-90.
15. Daniels, M. A.; Hogquist, K. A.; Jameson, S. C., Sweet 'n' sour: the impact of differential glycosylation on T cell responses. Nature immunology 2002, 3 (10), 903-10.
16. Dwek, M. V.; Ross, H. A.; Leathem, A. J., Proteome and glycosylation mapping identifies post-translational modifications associated with aggressive breast cancer. Proteomics 2001, 1 (6), 756-62.
17. International Human Genome Sequencing, C., Finishing the euchromatic sequence of the human genome. Nature 2004, 431 (7011), 931-45.
18. Pennisi, E., Genomics. ENCODE project writes eulogy for junk DNA. Science 2012, 337 (6099), 1159, 1161.
19. Wilkins, M. R.; Pasquali, C.; Appel, R. D.; Ou, K.; Golaz, O.; Sanchez, J. C.; Yan, J. X.; Gooley, A. A.; Hughes, G.; Humphery-Smith, I.; Williams, K. L.; Hochstrasser, D. F., From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Bio/technology 1996, 14 (1), 61-5.
20. James, P., Protein identification in the post-genome era: the rapid rise of proteomics. Quarterly reviews of biophysics 1997, 30 (4), 279-331.
21. Pandey, A.; Mann, M., Proteomics to study genes and genomes. Nature 2000, 405 (6788), 837-46.
22. Henzel, W. J.; Billeci, T. M.; Stults, J. T.; Wong, S. C.; Grimley, C.; Watanabe, C., Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proceedings of the National Academy of Sciences of the United States of America 1993, 90 (11), 5011-5.
23. Aebersold, R.; Mann, M., Mass spectrometry-based proteomics. Nature 2003, 422 (6928), 198-207.
24. Glish, G. L.; Vachet, R. W., The basics of mass spectrometry in the twenty-first century. Nature reviews. Drug discovery 2003, 2 (2), 140-50.
25. Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T., Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Analytical chemistry 1991, 63 (24), 1193A-1203A.
26. Hedrich, H. C.; Isobe, K.; Stahl, B.; Nokihara, K.; Kordel, M.; Schmid, R. D.; Karas, M.; Hillenkamp, F.; Spener, F., Matrix-assisted ultraviolet laser desorption/ionization mass spectrometry applied to multiple forms of lipases. Analytical biochemistry 1993, 211 (2), 288-92.
27. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926), 64-71.
28. Makarov, A., Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Analytical chemistry 2000, 72 (6), 1156-62.
29. Makarov, A.; Denisov, E.; Kholomeev, A.; Balschun, W.; Lange, O.; Strupat, K.; Horning, S., Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Analytical chemistry 2006, 78 (7), 2113-20.
30. Makarov, A.; Denisov, E.; Lange, O.; Horning, S., Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. Journal of the American Society for Mass Spectrometry 2006, 17 (7), 977-82.
31. Hallgren, K. W.; Zhang, D.; Kinter, M.; Willard, B.; Berkner, K. L., Methylation of gamma-Carboxylated Glu (Gla) Allows Detection by Liquid Chromatography-Mass Spectrometry and the Identification of Gla Residues in the gamma-Glutamyl Carboxylase. Journal of proteome research 2013, 12 (6), 2365-74.
32. Zhang, X.; Ye, J.; Jensen, O. N.; Roepstorff, P., Highly Efficient Phosphopeptide Enrichment by Calcium Phosphate Precipitation Combined with Subsequent IMAC Enrichment. Molecular & cellular proteomics : MCP 2007, 6 (11), 2032-42.
校內:2018-09-09公開