| 研究生: |
郭忠義 Guo, Zhong-Yi |
|---|---|
| 論文名稱: |
超音速高溫兩相流衝擊流場之模擬分析 Numerical Simulation of Supersonic High-Temperature Two-phase Impingement Flow |
| 指導教授: |
江滄柳
Jiang, Tsung-Leo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 固態燃料推進器之尾焰 、衝擊射流 、兩相流 、數值模擬 |
| 外文關鍵詞: | Solid propellant rocket exhaust plume, Impingement flow, Two-phase flow, Numerical simulation, Radiation effect |
| 相關次數: | 點閱:125 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於固態燃料推進器之尾焰中含有相當大比例的氧化鋁顆粒,因此帶有固態或液態顆粒之尾焰對於衝擊檔板不僅有高溫熱燒蝕也存在粒子沖蝕效應,故在數值模擬分析中若忽略顆粒相之影響將使模擬結果與真實結果有所落差。因此,本研究利用相關文獻以驗證兩相流模型之可靠性,並且利用驗證完成之兩相流流場模型進行兩相流衝擊流場之模擬分析,藉此探討粒子相與模擬模型之影響。首先,本研究利用三種不同粒徑之粒子進行模擬,並利用本研究結果與文獻中之結果進行定性比對,而本研究結果得到與文獻一致之結果。接著,利用沙子與水衝擊擋板之文獻進行結果比對,但由於論文中並無給定參考退縮率,導致研究結果與實驗結果有所落差。在改變參考退縮率後,得到與實驗結果相當相近之模擬結果,若能取得正確之實驗參數便能得到與真實實驗結果之模擬結果。最後,本研究利用驗證完成之兩相流流場模型進行兩相流衝擊流場之模擬,單相流與兩相流之流場表現擁有不同之速度及溫度分佈,速度場之差異主要是由粒子之阻力引起的,溫度場之差異主要是由粒子相與氣相之溫度差引起。由於兩相間之能量傳輸,導致氣體溫度分佈有所不同。在考慮粒子相之影響後,兩相流於衝擊壁面之熱通量最大值是大於單相流之壁面熱通量的,這說明了粒子相將會主導衝擊壁面之熱通量分佈,故粒子相之影響是不可忽略的。當考慮了熱輻射影響後,由於熱輻射影響導致衝擊壁面之熱通量小於未考慮熱輻射影響之熱通量。
Since the ratio of alumina particles in the plume of a solid propellant motor is considerably high, the exhaust plume of the solid propellant causes high-temperature thermal ablation and particle erosion on the impinging surface. When the effect of the particle phase is neglected, the result of calculation deviates significantly from the experimental solution. Therefore, in this study, relevant literatures were reviewed to verify the reliability of the two-phase flow model; then, the verified two-phase flow model was used to simulate the two-phase impingement flow field, and the effect of the particle phase was explored. In this study, three different particle sizes were first used for simulation, and the simulation results were used to perform qualitative comparisons with the results obtained from literature. The results obtained in this study are consistent with those in the literature. Next, in this study, the verified model was used to simulate the two-phase impingement flow. It was found that the velocity and temperature distributions were different between the single-phase and two-phase flow characteristics. The difference in velocity field is mainly caused by the drag of particles. The difference in temperature field is mainly caused by the energy transfer between the two phases. After considering the effect of the particle phase, the heat flux of the two-phase flow on the impingement surface is larger than that of the single-phase case. This shows that the particle phase dominates the heat flux distribution on the impingement surface; therefore, the effect of particles cannot be ignored. Finally, when considering the effect of radiation, the wall total heat flux was lower than that of the case when the thermal radiation was ignored.
【1】 https://en.wikipedia.org/wiki/Ballistic_missile
【1】 http://www.mdc.idv.tw/mdc/navy/usanavy/E-antiair-Missle-Luancher.htm
【3】 http://www.seaforces.org/wpnsys/SURFACE/Mk-41-missile-launcher.htm
【4】 Sutton G.P., Biblarz O. (2001), Rocket Propulsion Elements (7th Edition), New York:John Wiley & Sons, Inc.
【5】 徐文奇, “垂直發射裝置中燃氣兩相衝擊流場數值研究”, 哈爾
濱工程大學航天工程系碩士論文, 2007.
【6】 Lee K. S, Hong S. K., “Supersonic Jet Impingement Navier-Stokes Computations for Vertical Launching System Design Applications”, Journal of Spacecraft and Rockets, Vol.41, No.5, October 2004.
【7】 Nobuyuki T., A. Koichi H., Toshi F, Kazuo A., Masaru K., “Numerical Simulation of a Supersonic Jet Impingement on a Ground”, Journal of Aerospace, Vol. 100, Section 1, pp. 2168-2180, 1991.
【8】 Gojon R., Bogey C., Marsden O., “Large-Eddy Simulation of Supersonic Planar Jets Impinging on a Flat Plate at an Angle of 60 to 90 Degrees”, 21st AIAA/CEAS Aeroacoustics Conference, June 2015.
【9】 陳韋丞, “超音速高溫氣體衝擊擋板之數值模擬分析”, 成功大
學航空太空工程學系碩士論文,2019.
【10】 Menter F. R., “Two Equation Eddy Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, Vol. 32, No. 8, pp.1598-1605, 1994.
【11】 宋緯倫, “不同紊流模式對超音速流場數值模擬結果之影響”,
成功大學航空太空工程學系碩士論文, 2010.
【12】 Troyes J., Dubois I., Borie V., Boischot A., “Multi-phase Reactive Numerical Simulations of a Model Solid Rocket Motor Exhaust Jet”, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 2006.
【13】 Ma Y.J., Bao F.T., Xu H., Sun L., “Numerical Simulation of Solid Propellant Rocket Exhaust Plume Considering Two-Phase Flow Effects”, Applied Mechanics and Materials, Vol. 798, pp 185-189, October 2015.
【14】 Feng S., Nie W., Xie Q., Duan L., “Numerical Simulation of Flow Field and Radiation of an Aluminized Solid-Propellant Rocket Multiphase Exhaust Plume”, 39th AIAA Thermophysics Conference, June 2007.
【15】 Binauld Q., “Numerical Simulation of Radiation in High Altitude Solid Propellant Rocket Plumes”, 7th EUCASS Advances in Aerospace Sciences, June 2017.
【16】 Li Z., Wang N., Shi B., Li S., Yang R., “Effects of Particle Size on Two-Phase Flow Loss in Aluminized Solid Rocket Motors”, Acta Astronautic 159, pp.33-40,2019.
【17】 Parker R. R., Klausner J.F., Mei R., “Supersonic Two-Phase Impinging Jet Heat Transfer”, Journal of Heat Transfer, Vol.135, Issue 2, pp.647-655, December 2012.
【18】 Nguyen V. B., Nguyen Q. B., Liu Z. G., Wan S., Lim C. Y. H., Zhang Y. W., “A Combined Numerical–Experimental Study on the Effect of Surface Evolution on the Water–Sand Multiphase Flow Characteristics and the Material Erosion Behavior”, Wear 319(1-2), pp.96-109,2014.
【19】 林章裕, 林文山, 謝啟訓, “固態燃料推進器尾焰對於銅板之
沖蝕試驗及熱傳模擬”, 中華民國第27屆燃燒與能源學術研討會, 論文編號016, April 2017.
【20】 https://www.fangzhenxiuxiu.com/post/691478
【21】 楊成麥, “噴霧模式之參數對液態燃料注入超音速流場數值模
擬分析影響之研究”, 成功大學航空太空工程學系碩士論文, 2019.
校內:2022-09-01公開