簡易檢索 / 詳目顯示

研究生: 郭忠義
Guo, Zhong-Yi
論文名稱: 超音速高溫兩相流衝擊流場之模擬分析
Numerical Simulation of Supersonic High-Temperature Two-phase Impingement Flow
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 100
中文關鍵詞: 固態燃料推進器之尾焰衝擊射流兩相流數值模擬
外文關鍵詞: Solid propellant rocket exhaust plume, Impingement flow, Two-phase flow, Numerical simulation, Radiation effect
相關次數: 點閱:125下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於固態燃料推進器之尾焰中含有相當大比例的氧化鋁顆粒,因此帶有固態或液態顆粒之尾焰對於衝擊檔板不僅有高溫熱燒蝕也存在粒子沖蝕效應,故在數值模擬分析中若忽略顆粒相之影響將使模擬結果與真實結果有所落差。因此,本研究利用相關文獻以驗證兩相流模型之可靠性,並且利用驗證完成之兩相流流場模型進行兩相流衝擊流場之模擬分析,藉此探討粒子相與模擬模型之影響。首先,本研究利用三種不同粒徑之粒子進行模擬,並利用本研究結果與文獻中之結果進行定性比對,而本研究結果得到與文獻一致之結果。接著,利用沙子與水衝擊擋板之文獻進行結果比對,但由於論文中並無給定參考退縮率,導致研究結果與實驗結果有所落差。在改變參考退縮率後,得到與實驗結果相當相近之模擬結果,若能取得正確之實驗參數便能得到與真實實驗結果之模擬結果。最後,本研究利用驗證完成之兩相流流場模型進行兩相流衝擊流場之模擬,單相流與兩相流之流場表現擁有不同之速度及溫度分佈,速度場之差異主要是由粒子之阻力引起的,溫度場之差異主要是由粒子相與氣相之溫度差引起。由於兩相間之能量傳輸,導致氣體溫度分佈有所不同。在考慮粒子相之影響後,兩相流於衝擊壁面之熱通量最大值是大於單相流之壁面熱通量的,這說明了粒子相將會主導衝擊壁面之熱通量分佈,故粒子相之影響是不可忽略的。當考慮了熱輻射影響後,由於熱輻射影響導致衝擊壁面之熱通量小於未考慮熱輻射影響之熱通量。

    Since the ratio of alumina particles in the plume of a solid propellant motor is considerably high, the exhaust plume of the solid propellant causes high-temperature thermal ablation and particle erosion on the impinging surface. When the effect of the particle phase is neglected, the result of calculation deviates significantly from the experimental solution. Therefore, in this study, relevant literatures were reviewed to verify the reliability of the two-phase flow model; then, the verified two-phase flow model was used to simulate the two-phase impingement flow field, and the effect of the particle phase was explored. In this study, three different particle sizes were first used for simulation, and the simulation results were used to perform qualitative comparisons with the results obtained from literature. The results obtained in this study are consistent with those in the literature. Next, in this study, the verified model was used to simulate the two-phase impingement flow. It was found that the velocity and temperature distributions were different between the single-phase and two-phase flow characteristics. The difference in velocity field is mainly caused by the drag of particles. The difference in temperature field is mainly caused by the energy transfer between the two phases. After considering the effect of the particle phase, the heat flux of the two-phase flow on the impingement surface is larger than that of the single-phase case. This shows that the particle phase dominates the heat flux distribution on the impingement surface; therefore, the effect of particles cannot be ignored. Finally, when considering the effect of radiation, the wall total heat flux was lower than that of the case when the thermal radiation was ignored.

    摘要 I SUMMARY III INTRODUCTION IV NUMERICAL MODEL AND THEORY V RESULTS AND DISCUSSION VII CONCLUSIONS XIII REFERENCES XIII 致謝 XIV 目錄 XV 表目錄 XVIII 圖目錄 XIX 符號索引 XXV 第一章 導論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究動機與目的 33 第二章 數學與物理模型 35 2.1 基本假設 35 2.2 連續相之統御方程式 36 2.3 離散相之統御方程式 40 2.4 熱輻射模型 43 2.5 紊流模型 45 2.6 邊牆函數 48 第三章 數值方法 51 3.1 控制體積轉換之傳輸方程式 52 3.2 壓力耦合半隱式演算法 53 3.3 二階上風法 55 3.4 離散相計算過程 56 3.5 鬆弛因子 57 第四章 結果與討論 59 4.1 兩相流模型之建立及驗證分析 60 4.2 粒子相影響之比對分析 67 4.3 排焰道出口差異之比對分析 76 4.4 輻射效應之比對分析 82 4.5 十度軸對稱模型與九十度模型之比對分析 86 第五章 結論與未來工作 93 5.1 結論 94 5.2 未來工作 96 參考文獻 98

    【1】 https://en.wikipedia.org/wiki/Ballistic_missile
    【1】 http://www.mdc.idv.tw/mdc/navy/usanavy/E-antiair-Missle-Luancher.htm
    【3】 http://www.seaforces.org/wpnsys/SURFACE/Mk-41-missile-launcher.htm
    【4】 Sutton G.P., Biblarz O. (2001), Rocket Propulsion Elements (7th Edition), New York:John Wiley & Sons, Inc.
    【5】 徐文奇, “垂直發射裝置中燃氣兩相衝擊流場數值研究”, 哈爾
    濱工程大學航天工程系碩士論文, 2007.
    【6】 Lee K. S, Hong S. K., “Supersonic Jet Impingement Navier-Stokes Computations for Vertical Launching System Design Applications”, Journal of Spacecraft and Rockets, Vol.41, No.5, October 2004.
    【7】 Nobuyuki T., A. Koichi H., Toshi F, Kazuo A., Masaru K., “Numerical Simulation of a Supersonic Jet Impingement on a Ground”, Journal of Aerospace, Vol. 100, Section 1, pp. 2168-2180, 1991.
    【8】 Gojon R., Bogey C., Marsden O., “Large-Eddy Simulation of Supersonic Planar Jets Impinging on a Flat Plate at an Angle of 60 to 90 Degrees”, 21st AIAA/CEAS Aeroacoustics Conference, June 2015.
    【9】 陳韋丞, “超音速高溫氣體衝擊擋板之數值模擬分析”, 成功大
    學航空太空工程學系碩士論文,2019.
    【10】 Menter F. R., “Two Equation Eddy Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, Vol. 32, No. 8, pp.1598-1605, 1994.
    【11】 宋緯倫, “不同紊流模式對超音速流場數值模擬結果之影響”,
    成功大學航空太空工程學系碩士論文, 2010.
    【12】 Troyes J., Dubois I., Borie V., Boischot A., “Multi-phase Reactive Numerical Simulations of a Model Solid Rocket Motor Exhaust Jet”, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 2006.
    【13】 Ma Y.J., Bao F.T., Xu H., Sun L., “Numerical Simulation of Solid Propellant Rocket Exhaust Plume Considering Two-Phase Flow Effects”, Applied Mechanics and Materials, Vol. 798, pp 185-189, October 2015.
    【14】 Feng S., Nie W., Xie Q., Duan L., “Numerical Simulation of Flow Field and Radiation of an Aluminized Solid-Propellant Rocket Multiphase Exhaust Plume”, 39th AIAA Thermophysics Conference, June 2007.
    【15】 Binauld Q., “Numerical Simulation of Radiation in High Altitude Solid Propellant Rocket Plumes”, 7th EUCASS Advances in Aerospace Sciences, June 2017.
    【16】 Li Z., Wang N., Shi B., Li S., Yang R., “Effects of Particle Size on Two-Phase Flow Loss in Aluminized Solid Rocket Motors”, Acta Astronautic 159, pp.33-40,2019.
    【17】 Parker R. R., Klausner J.F., Mei R., “Supersonic Two-Phase Impinging Jet Heat Transfer”, Journal of Heat Transfer, Vol.135, Issue 2, pp.647-655, December 2012.
    【18】 Nguyen V. B., Nguyen Q. B., Liu Z. G., Wan S., Lim C. Y. H., Zhang Y. W., “A Combined Numerical–Experimental Study on the Effect of Surface Evolution on the Water–Sand Multiphase Flow Characteristics and the Material Erosion Behavior”, Wear 319(1-2), pp.96-109,2014.
    【19】 林章裕, 林文山, 謝啟訓, “固態燃料推進器尾焰對於銅板之
    沖蝕試驗及熱傳模擬”, 中華民國第27屆燃燒與能源學術研討會, 論文編號016, April 2017.
    【20】 https://www.fangzhenxiuxiu.com/post/691478
    【21】 楊成麥, “噴霧模式之參數對液態燃料注入超音速流場數值模
    擬分析影響之研究”, 成功大學航空太空工程學系碩士論文, 2019.

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE