簡易檢索 / 詳目顯示

研究生: 黃騰德
Huang, Teng-Te
論文名稱: 以氫氧化鈣再生煙道氣中二氧化碳吸收劑-氨水溶液之研究
The study of the regeneration of NH3 solution by Ca(OH)2 for CO2 absorbed in the flue gas
指導教授: 朱信
CHUH, SIN
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 126
中文關鍵詞: 吸收容量再生效率氨水溶液二氧化碳
外文關鍵詞: Regeneration efficiency, Ammonia solution, Carbon dioxide, Absorption capac
相關次數: 點閱:127下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於二氧化碳分離與回收技術中,以化學溶劑吸收法研究最多,也被認為最經濟可行,於實驗室研究中發現,以氨水吸收二氧化碳的吸收效果佳。本研究中主要是利用半連續式的噴霧塔反應器來吸收二氧化碳,並探討再生吸收二氧化碳至飽和之氨水溶液,及其再生的效率與吸收容量之變化。研究成果分述如下:
    (1) 以不同的氨水濃度,加入氫氧化鈣以進行再生反應,研究中發現以1%氨水溶液,其再生效果最佳可達68.39%,其次為3%與5%之氨水溶液。
    (2) 以不同的氫氧化鈣加藥量進行再生,發現以Ca(OH)2/CO2=1.5/1、1/1、0.75/1(莫耳比),不同之計量比下進行再生實驗,發現當計量比Ca(OH)2/CO2=1.5/1、1/1時,並無明顯之差異性,而其再生效率及吸收容量均較計量比Ca(OH)2/CO2 = 0.75/1為高。
    (3) 以不同的再生時間下進行再生,並分別於密閉之系統中進行攪拌再生及不攪拌再生,由結果顯示,利用攪拌器再生,其再生反應較佳,於進行十分鐘後已達穩定。
    (4) 以氫氧化鈣再生循環吸收四次,發現隨著再生次數的增加,氨水之吸收容量呈現出一定之衰退性,使得氨水溶液之吸收容量由1.67降至0.27 kgCO2/kgNH3。
    (5) 分別以氧化鈣與氫氧化鈣再生氨水吸收液,發現以氫氧化鈣再生氨水溶液之吸收容量與再生效率較以氧化鈣再生效果佳。
    (6) 我們可由氨水實驗所得之CO2吸收容量進行推估吸收之反應所產生之產物應以碳酸銨為主,而非碳酸氫銨。

    Among these techniques of various technologies have been tested to remove and recover CO2 from flue gas streams. Chemical solvent absorption methods have been extensively studied and are considered as a reliable and relatively low cost method for reducing CO2. The process of ammonia scrubbing is a promising technology in reducing the greenhouse effect.
    This study was conducted a semi-continuous flow experiments to absorb the CO2 gas in the spray tower reactor. To determine the absorption capacity and the regeneration efficiency after regenerated the absorbed NH3 solution. The explanation of results can be divided into five major parts.
    (1) The effect of the NH3 solution concentration: we can find the regeneration efficiency using Ca(OH)2 to regenerate the absorbed NH3 solution, and the maximum regeneration efficiency can achieve 68.39% under 1% NH3 solution.
    (2) The effect of the mole ratio of Ca(OH)2/CO2: we can find the regeneration experiment under the different mole ratio of Ca(OH)2/CO2 = 1.5/1, 1/1, 0.75/1, the result shows the mole ratio of Ca(OH)2/CO2 = 1.5/1, 1/1, it is no significant changes about the absorption capacity and the regeneration efficiency,but is higher than the mole ratio Ca(OH)2/CO2 = 0.75/1.
    (3) The effect of the regeneration time: the result shows the efficiency of regeneration happened in the agitated vessel reactor is higher than that reacted under 10 min in the close system.
    (4) The absorption capacity the NH3 solution decreases after regenerated four times,and the result shows the absorption capacity decreases from 1.67 to 0.27 kgCO2/kgNH3.
    (5) The Ca(OH)2 have the higher absorption capacity and the regeneration efficiency among Ca(OH)2 and CaO reagent to regenerate NH3 solution.
    (6) We can predict the main production of the reaction between CO2 and ammonia is (NH4)2CO3 from accounting the absorption capacity.

    誌謝 I 摘要 I Abstract II 總目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 研究動機 1 1-2 研究內容與架構 4 第二章 文獻回顧 6 2-1二氧化碳的來源、特性及溫室效應對環境的影響 6 2-1-1二氧化碳的來源、特性及國內現況 6 2-1-2溫室效應對環境的影響 7 2-2 二氧化碳減量的策略與方法 12 2-2-1二氧化碳管前處理 12 2-2-2二氧化碳管末控制技術 13 2-2-3 後續處置與再利用 17 2-3 利用氨水或氨氣吸收二氧化碳之反應 20 2-3-1反應機制 20 2-3-2 反應之再利用 22 第三章 研究方法 25 3-1 實驗設備 25 3-1-1 進料系統 25 3-1-2 反應器 28 3-1-3 取樣系統 31 3-1-4 分析儀器 33 3-1-5 再生實驗設備 38 3-1-6 其他實驗設備 39 3-2 實驗材料 41 3-3 實驗方法與步驟 42 3-3-1 實驗規劃 42 3-3-2 實驗前之預備工作 44 3-3-3 實驗步驟 47 第四章 結果與討論 50 4-1 預備實驗 50 4-2 吸收飽和實驗 60 4-2-1 氨水濃度對氨水再生效率的影響 66 4-2-2 不同的氫氧化鈣加藥量對氨水再生效率的影響 71 4-2-3 再生攪拌時間反應動力之探討 74 4-2-4 吸收-再生循環對吸收容量之影響 81 4-2-5 以不同的再生試劑再生氨水之比較 84 4-2-6 IC液相離子分析 88 4-3 輔助實驗 94 第五章 結論與建議 97 5-1 結論 97 5-2 建議 99 參考文獻 101 附錄一 106 附錄二 113 附錄三 115 附錄四 121 附錄五 125

    Abanades, J.C., and Alvarez, D., “Conversion Limits in the Reaction of CO2 with Lime”, Energy & Fuel.17,308-315, 2003.
    Aroonwilas, A. Tontiwachwuthikul, P., “Mechanistic model for prediction of structured packing mass transfer performance in CO2 absorption with chemical reactions”, Chemical Engineering Science. 55, 3651-3663, 2000.
    Blauwhoff, P.M., Versteeg, G.F., and van Swaaij, “A study on the reaction between CO2 and alkanolamines in aqueous solution”, Chem. Eng. Sci., 38, 1411-1429, 1983.
    Crooks, J.E., and Donnellan, J.P.,“Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution”, J. Chem. Soc., Perkin Trans.II, 331-333, 1989.
    Chang, C.S. and Rochelle, G.T., “SO2 Absorption into Aqueous Solutions”, AIChE Journal , 27(2), p.292~298, 1981.
    Dankwerts, P.V., “Gas-Liquid Reactions”, McGraw-Hill ,New York ,p238-251, 1970.
    Danckwerts. P.V. and Sharma, M.M., “Absorption of carbon dioxide into solutions of alkalis and amines (with some notes on hydrogen sulphide and carbonyl sulphide)”. Chem. Eng., 10, CE 244-288, 1966.
    Danckwerts. P. V., “The reaction of CO2 with ethanolamines”, Chem. Eng. Sci., 34, 443-446, 1979.
    Fleiseher, C., Becker, S., and Eigennerger. G., Detailed Modeling of the chemisorption of CO2 in NaOH solutions”, Chemical Engineering Science, 51, 1715-1724,1996.
    Gupta, H., Fan, L.S., “Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas”, Ind. Eng. Chem. Res, 41, 4035-4042, 2002.
    Herskowits, D., Herskowits, V. and Stephan, K., 1990, “Characterization of a two-phase impinging jet absorber - Ⅱ.Absorption with chemical reaction of CO2 in NaOH solutions”, Chem. Environ. Sci, 44, 1281-1287.
    Hsunling, Bai,An Chin Yen, “Removal of CO2 greenhouse gas by ammonia scrubbing”, Ind. Eng. Chem. Res, 36, 2490-2493, 1997.
    Houping Huang,Shin Ger Chang, , “Method to Regenerate Ammonia for the Capture of Carbon Dioxide” ,Energy Fuel. 2001.
    Hikita, H., Asai, S., Ishikawa, H. and Honda, M., “The kinetics of reactions of carbon dioxide with monoethanola nine. Diethanolamine and triethanolamine by a rapid mixing method”, Chem. Eng. J., 13, 7-12, 1977.
    Ho, C.S., Shin, S.M, Lee, C.D., “Influence of CO2 and O2 on the reaction of Ca(OH)2 under spray-drying flue gas desulfurization conditions”, Ind. Eng. Chem. Res, 35, 3915-3919, 1996.
    Joosten, Geert E.H. and Danckwerts P.V., “Solubility and Diffusivity of NO in Equimolar Potassium Carbonate-Potassium Bicarbonate Solutions at 25℃ and 1atm”, J. of Chemical and Engineering Data, 17(4), p.452~454, 1972.
    Juan Carlos Abanades, “The maximum capture of CO2 using a carbonation/calcinations cycle of CaO/CaCO3”, chem Eng J., 90, 303-306, 2002.
    Kimura, N.,Omata,K.,Kiga,T.,Takano,S. and Shikisima,S., “Characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery”, Energy Convers. Mgmt., 36, p805, 1995.
    Lee, J.W., Li, Rongfu, “Integration of fossil energy systems with CO2 sequestration through NH4HCO3 production”, Energy Conversion and Management, 44, 1535-1546, 2003.
    Li, X., Hagaman, Tsouris, Lee, J.W., “Removal of carbon dioxide from flue gas by ammonia carbonation in the gas phase”, Energy & Fuel, 17, 69-74, 2003.
    Littel, R. J., Versteeg, G. F. and van Swaaij, W. P. M., “Solubility and diffusivity data for the absorption of COS, CO2 and N2O in amine solutions” ,J. Chem. Eng. Data, 37, 49~55, 1992.
    Mess, D., Sarofim, Longwell, John, P, “Product layer diffusion during the reaction of calcium oxide with carbon dioxide”, Energy & Fuel, 13, 999-1005, 1999.
    Onda, K., “Salting-out Parameters of Gas Solubility in Aqueous Salt Solutions”, J. of Chemical Engineering of Japan, 3(1), p.18, 1970.
    Saha, A. K., Bandyopadhyay, S. S. and Biswas, A. K., “Solubility and diffusivity of N2O and CO2 in aqueous solutions of 2-amino-2methl-1-propanol”, J. chem Eng. Data, 38, 78-82, 1993.
    Shih, S.H., Ho, C.S., Song, Y.S., and Li, J.P, “Kinetics of reactio of Ca(OH)2 at low temperature, Ind. Eng. Chem, Res, 38, 1316-1322, 1999.
    Teng, T.T. and Mather, A. E., “Solubility of CO2 in AMP solution”, J. Chem. Eng. Data, 35,410-411, 1990.
    Teramoto, M.,Nakatani, R., Huang, Q. and Watari, T., “Facilitated Transport of CO2 Through Supported Liquid Membranes of various Amine Solutions- Effects of Rate and Equilibrium of Reaction between CO2 and Amine”, J. Chem. Eng of Japan, 30,328-335, 1997.
    Versteeg, G. F. and van Swaaij, W. P. M., “Solubility and diffusibility of acid gases (CO2, N2O) in aqueous alkanolamine solutions”, J. Chem. Eng. Data, 33, 29-34, 1988b.
    Xu, S., Otto, F. D. and Mather, A. E., “Physical properties of aqueous AMP solutions”, J. Chem. Eng. Data 36,71-75, 1991.
    吳哲次,「都市焚化爐廢氣中二氧化碳減之探討」,國立臺灣大學環境工程學研究所碩士,2001。
    李文峰,「以MEA溶液去除煙道氣中二氧化碳之研究」,成功大學環工所碩士論文,2002。
    李玉鈴,「台灣二氧化碳減量之因應對策與建議」,工業簡訊第二十八卷 一期,p22-42,1998。
    李忠達,「氫氧化鈣與二氧化碳反應之反應動力之研究」,國立成功大學環境工程所碩士論文,1996。
    邱崇銘,「以氨水溶液去除煙道氣中二氧化碳之反應動力研究」,成功大學環工所碩士論文,2000。
    姜善鑫,「全球氣候變遷(上)」,環境教育季刊第十六期,p1-11,1993。
    施育林,「在噴霧塔中以氨水溶液去除二氧化碳之研究」,成功大學環工所碩士論文,2001。
    高肇藩,「給水工程(衛生工程.自來水篇)」,1987。
    康育豪,「深海掩埋液態CO2技術之最佳注入深度及液滴大小探討」,國立交通大學環境工程所碩士論文,2000。
    陳重修,「二氧化碳與二氧化硫整合性控制技術之研究」,國立臺灣大學環境工程學研究所碩士,2000。
    楊斐喬,「二氧化碳之分離及捕集,民生化工產業溫室氣體減量報導」,第7期,2000。
    廖培欣,「二氧化碳液體在海洋中的溶解之研究」,國立成功大學化學工程所碩士論文,1999。
    潘守保,「以混合醇胺溶液(MEA+AMP)吸收二氧化碳溫室效應氣體之可行性研究」,國立交通大學環工所碩士論文,1998。
    顧洋,「氣候變遷對工業發展之影響,地球環境變遷-地球溫暖化、溫室效應氣體對策研討會論文集」,pp.99-103,1995。

    下載圖示 校內:立即公開
    校外:2003-07-10公開
    QR CODE