| 研究生: |
黃騰德 Huang, Teng-Te |
|---|---|
| 論文名稱: |
以氫氧化鈣再生煙道氣中二氧化碳吸收劑-氨水溶液之研究 The study of the regeneration of NH3 solution by Ca(OH)2 for CO2 absorbed in the flue gas |
| 指導教授: |
朱信
CHUH, SIN |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 吸收容量 、再生效率 、氨水溶液 、二氧化碳 |
| 外文關鍵詞: | Regeneration efficiency, Ammonia solution, Carbon dioxide, Absorption capac |
| 相關次數: | 點閱:127 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於二氧化碳分離與回收技術中,以化學溶劑吸收法研究最多,也被認為最經濟可行,於實驗室研究中發現,以氨水吸收二氧化碳的吸收效果佳。本研究中主要是利用半連續式的噴霧塔反應器來吸收二氧化碳,並探討再生吸收二氧化碳至飽和之氨水溶液,及其再生的效率與吸收容量之變化。研究成果分述如下:
(1) 以不同的氨水濃度,加入氫氧化鈣以進行再生反應,研究中發現以1%氨水溶液,其再生效果最佳可達68.39%,其次為3%與5%之氨水溶液。
(2) 以不同的氫氧化鈣加藥量進行再生,發現以Ca(OH)2/CO2=1.5/1、1/1、0.75/1(莫耳比),不同之計量比下進行再生實驗,發現當計量比Ca(OH)2/CO2=1.5/1、1/1時,並無明顯之差異性,而其再生效率及吸收容量均較計量比Ca(OH)2/CO2 = 0.75/1為高。
(3) 以不同的再生時間下進行再生,並分別於密閉之系統中進行攪拌再生及不攪拌再生,由結果顯示,利用攪拌器再生,其再生反應較佳,於進行十分鐘後已達穩定。
(4) 以氫氧化鈣再生循環吸收四次,發現隨著再生次數的增加,氨水之吸收容量呈現出一定之衰退性,使得氨水溶液之吸收容量由1.67降至0.27 kgCO2/kgNH3。
(5) 分別以氧化鈣與氫氧化鈣再生氨水吸收液,發現以氫氧化鈣再生氨水溶液之吸收容量與再生效率較以氧化鈣再生效果佳。
(6) 我們可由氨水實驗所得之CO2吸收容量進行推估吸收之反應所產生之產物應以碳酸銨為主,而非碳酸氫銨。
Among these techniques of various technologies have been tested to remove and recover CO2 from flue gas streams. Chemical solvent absorption methods have been extensively studied and are considered as a reliable and relatively low cost method for reducing CO2. The process of ammonia scrubbing is a promising technology in reducing the greenhouse effect.
This study was conducted a semi-continuous flow experiments to absorb the CO2 gas in the spray tower reactor. To determine the absorption capacity and the regeneration efficiency after regenerated the absorbed NH3 solution. The explanation of results can be divided into five major parts.
(1) The effect of the NH3 solution concentration: we can find the regeneration efficiency using Ca(OH)2 to regenerate the absorbed NH3 solution, and the maximum regeneration efficiency can achieve 68.39% under 1% NH3 solution.
(2) The effect of the mole ratio of Ca(OH)2/CO2: we can find the regeneration experiment under the different mole ratio of Ca(OH)2/CO2 = 1.5/1, 1/1, 0.75/1, the result shows the mole ratio of Ca(OH)2/CO2 = 1.5/1, 1/1, it is no significant changes about the absorption capacity and the regeneration efficiency,but is higher than the mole ratio Ca(OH)2/CO2 = 0.75/1.
(3) The effect of the regeneration time: the result shows the efficiency of regeneration happened in the agitated vessel reactor is higher than that reacted under 10 min in the close system.
(4) The absorption capacity the NH3 solution decreases after regenerated four times,and the result shows the absorption capacity decreases from 1.67 to 0.27 kgCO2/kgNH3.
(5) The Ca(OH)2 have the higher absorption capacity and the regeneration efficiency among Ca(OH)2 and CaO reagent to regenerate NH3 solution.
(6) We can predict the main production of the reaction between CO2 and ammonia is (NH4)2CO3 from accounting the absorption capacity.
Abanades, J.C., and Alvarez, D., “Conversion Limits in the Reaction of CO2 with Lime”, Energy & Fuel.17,308-315, 2003.
Aroonwilas, A. Tontiwachwuthikul, P., “Mechanistic model for prediction of structured packing mass transfer performance in CO2 absorption with chemical reactions”, Chemical Engineering Science. 55, 3651-3663, 2000.
Blauwhoff, P.M., Versteeg, G.F., and van Swaaij, “A study on the reaction between CO2 and alkanolamines in aqueous solution”, Chem. Eng. Sci., 38, 1411-1429, 1983.
Crooks, J.E., and Donnellan, J.P.,“Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution”, J. Chem. Soc., Perkin Trans.II, 331-333, 1989.
Chang, C.S. and Rochelle, G.T., “SO2 Absorption into Aqueous Solutions”, AIChE Journal , 27(2), p.292~298, 1981.
Dankwerts, P.V., “Gas-Liquid Reactions”, McGraw-Hill ,New York ,p238-251, 1970.
Danckwerts. P.V. and Sharma, M.M., “Absorption of carbon dioxide into solutions of alkalis and amines (with some notes on hydrogen sulphide and carbonyl sulphide)”. Chem. Eng., 10, CE 244-288, 1966.
Danckwerts. P. V., “The reaction of CO2 with ethanolamines”, Chem. Eng. Sci., 34, 443-446, 1979.
Fleiseher, C., Becker, S., and Eigennerger. G., Detailed Modeling of the chemisorption of CO2 in NaOH solutions”, Chemical Engineering Science, 51, 1715-1724,1996.
Gupta, H., Fan, L.S., “Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas”, Ind. Eng. Chem. Res, 41, 4035-4042, 2002.
Herskowits, D., Herskowits, V. and Stephan, K., 1990, “Characterization of a two-phase impinging jet absorber - Ⅱ.Absorption with chemical reaction of CO2 in NaOH solutions”, Chem. Environ. Sci, 44, 1281-1287.
Hsunling, Bai,An Chin Yen, “Removal of CO2 greenhouse gas by ammonia scrubbing”, Ind. Eng. Chem. Res, 36, 2490-2493, 1997.
Houping Huang,Shin Ger Chang, , “Method to Regenerate Ammonia for the Capture of Carbon Dioxide” ,Energy Fuel. 2001.
Hikita, H., Asai, S., Ishikawa, H. and Honda, M., “The kinetics of reactions of carbon dioxide with monoethanola nine. Diethanolamine and triethanolamine by a rapid mixing method”, Chem. Eng. J., 13, 7-12, 1977.
Ho, C.S., Shin, S.M, Lee, C.D., “Influence of CO2 and O2 on the reaction of Ca(OH)2 under spray-drying flue gas desulfurization conditions”, Ind. Eng. Chem. Res, 35, 3915-3919, 1996.
Joosten, Geert E.H. and Danckwerts P.V., “Solubility and Diffusivity of NO in Equimolar Potassium Carbonate-Potassium Bicarbonate Solutions at 25℃ and 1atm”, J. of Chemical and Engineering Data, 17(4), p.452~454, 1972.
Juan Carlos Abanades, “The maximum capture of CO2 using a carbonation/calcinations cycle of CaO/CaCO3”, chem Eng J., 90, 303-306, 2002.
Kimura, N.,Omata,K.,Kiga,T.,Takano,S. and Shikisima,S., “Characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery”, Energy Convers. Mgmt., 36, p805, 1995.
Lee, J.W., Li, Rongfu, “Integration of fossil energy systems with CO2 sequestration through NH4HCO3 production”, Energy Conversion and Management, 44, 1535-1546, 2003.
Li, X., Hagaman, Tsouris, Lee, J.W., “Removal of carbon dioxide from flue gas by ammonia carbonation in the gas phase”, Energy & Fuel, 17, 69-74, 2003.
Littel, R. J., Versteeg, G. F. and van Swaaij, W. P. M., “Solubility and diffusivity data for the absorption of COS, CO2 and N2O in amine solutions” ,J. Chem. Eng. Data, 37, 49~55, 1992.
Mess, D., Sarofim, Longwell, John, P, “Product layer diffusion during the reaction of calcium oxide with carbon dioxide”, Energy & Fuel, 13, 999-1005, 1999.
Onda, K., “Salting-out Parameters of Gas Solubility in Aqueous Salt Solutions”, J. of Chemical Engineering of Japan, 3(1), p.18, 1970.
Saha, A. K., Bandyopadhyay, S. S. and Biswas, A. K., “Solubility and diffusivity of N2O and CO2 in aqueous solutions of 2-amino-2methl-1-propanol”, J. chem Eng. Data, 38, 78-82, 1993.
Shih, S.H., Ho, C.S., Song, Y.S., and Li, J.P, “Kinetics of reactio of Ca(OH)2 at low temperature, Ind. Eng. Chem, Res, 38, 1316-1322, 1999.
Teng, T.T. and Mather, A. E., “Solubility of CO2 in AMP solution”, J. Chem. Eng. Data, 35,410-411, 1990.
Teramoto, M.,Nakatani, R., Huang, Q. and Watari, T., “Facilitated Transport of CO2 Through Supported Liquid Membranes of various Amine Solutions- Effects of Rate and Equilibrium of Reaction between CO2 and Amine”, J. Chem. Eng of Japan, 30,328-335, 1997.
Versteeg, G. F. and van Swaaij, W. P. M., “Solubility and diffusibility of acid gases (CO2, N2O) in aqueous alkanolamine solutions”, J. Chem. Eng. Data, 33, 29-34, 1988b.
Xu, S., Otto, F. D. and Mather, A. E., “Physical properties of aqueous AMP solutions”, J. Chem. Eng. Data 36,71-75, 1991.
吳哲次,「都市焚化爐廢氣中二氧化碳減之探討」,國立臺灣大學環境工程學研究所碩士,2001。
李文峰,「以MEA溶液去除煙道氣中二氧化碳之研究」,成功大學環工所碩士論文,2002。
李玉鈴,「台灣二氧化碳減量之因應對策與建議」,工業簡訊第二十八卷 一期,p22-42,1998。
李忠達,「氫氧化鈣與二氧化碳反應之反應動力之研究」,國立成功大學環境工程所碩士論文,1996。
邱崇銘,「以氨水溶液去除煙道氣中二氧化碳之反應動力研究」,成功大學環工所碩士論文,2000。
姜善鑫,「全球氣候變遷(上)」,環境教育季刊第十六期,p1-11,1993。
施育林,「在噴霧塔中以氨水溶液去除二氧化碳之研究」,成功大學環工所碩士論文,2001。
高肇藩,「給水工程(衛生工程.自來水篇)」,1987。
康育豪,「深海掩埋液態CO2技術之最佳注入深度及液滴大小探討」,國立交通大學環境工程所碩士論文,2000。
陳重修,「二氧化碳與二氧化硫整合性控制技術之研究」,國立臺灣大學環境工程學研究所碩士,2000。
楊斐喬,「二氧化碳之分離及捕集,民生化工產業溫室氣體減量報導」,第7期,2000。
廖培欣,「二氧化碳液體在海洋中的溶解之研究」,國立成功大學化學工程所碩士論文,1999。
潘守保,「以混合醇胺溶液(MEA+AMP)吸收二氧化碳溫室效應氣體之可行性研究」,國立交通大學環工所碩士論文,1998。
顧洋,「氣候變遷對工業發展之影響,地球環境變遷-地球溫暖化、溫室效應氣體對策研討會論文集」,pp.99-103,1995。