| 研究生: |
朱浩誠 Chu, Hao-Cheng |
|---|---|
| 論文名稱: |
以不同初始序列之梯度搜尋之MIMO系統偵測 Detection of the MIMO System Based on the Gradient Search with Different Initial Sequences |
| 指導教授: |
張名先
Chang, Ming-Xian |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 初始序列 、梯度搜尋 、多輸入多輸出 |
| 外文關鍵詞: | MIMO, Maximum likelihood detection |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現代通信技術隨著時間而變化,數據傳輸吞吐量也在迅速增加。如何快速可靠地傳輸數據成為一個重要問題。因此,多輸入多輸出(MIMO)系統成為未來的核心技術之一,因為MIMO系統具有顯著提高傳輸吞吐量和正確性的能力。最大似然(ML)檢測是獲得最優解的方法之一。儘管正確性是不容置疑的,但高度複雜性是最大的缺點。在這項工作中,我們提出了一種基於差分度量和梯度搜索的MIMO系統算法。首先,我們定義差分度量並導出梯度搜索的不同階的差分度量的遞歸計算。然後我們使用ZF和MMSE算法來找到初始序列。通過仿真,我們觀察和研究了不同初始序列在MIMO系統梯度搜索中的作用。
Modern communication technologies are changing with time, and data transmission throughput is also increasing quickly. How to transfer data quickly and reliably becomes an important issue. Therefore, multiple-input multiple-output (MIMO) systems become one of the core technologies of the future, since the MIMO system has the ability to significantly increase transmission throughput and correctness. Maximum Likelihood (ML) detection is one of the means to get the optimal solution. Although the correctness is unquestionable, the high degree of complexity is the biggest drawback. In this work, we present an algorithm for MIMO systems based on differential metrics and gradient search. First, we define the differential measure and derive the recursive calculation of the differential measure of the different orders of the gradient search. Then we use the ZF and MMSE algorithms to find the initial sequence. Through the simulation, we observe and study the effect of different initial sequences in the gradient search for the MIMO system.
[1]. M. O. Damen, H. El Gamal, and G. Caire, “On maximum-likelihood detection and the search for the closest lattice point,” IEEE Trans. Inf. Theory, vol. 49, no.10, pp. 2389-2402, Oct. 2003.
[2]. D. Gesbert, M. Shafi, D.-S. Shiu, and P. J. Smith, “From theory to practice:an
overview of MIMO space-time coded wireless systems,” IEEE J. Sel. Areas Commun., vol. 21, pp. 281-302, Apr. 2003.
[3]. G. D. Golden, C. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, “Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture,” IEEE Electron. Lett., vol. 35, no. 1, pp. 14-16, Jan. 1999.
[4]. L. G. Barbero and J. S. Thompson, “Fixing the complexity of the sphere decoder for MIMO detection,” IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2131-2142, June 2008.
[5]. T. H. Kim, “Low-complexity sorted QR decomposition for MIMO systems based on pairwise column symmetrization,” IEEE Trans. Wireless Commun., vol. 13, no 3, pp. 1388-1396, Mar. 2014.
[6]. C. Zheng, X. Chu, J. McAllister, and R. Woods, “Real-valued fixed-complexity sphere decoder for high dimensional QAM-MIMO systems,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4493-4499, Sept. 2011.
[7]. J. Benesty, Y. Huang, and J. Chen, “A fast recursive algorithm for optimum sequential signal detection in a BLAST system,” IEEE Trans. Signal Process., vol.51, no. 7, pp. 1722-1730, July 2003.
[8]. J. C. Braz and R. S. Neto, “Low-complexity sphere decoding detector for generalized spatial modulation systems,” IEEE Commun. Lett., vol. 18, no. 6, pp. 949-952, Apr. 2014.
[9]. M.-X. Chang and W.-Y. Chang, “Efficient maximum likelihood detection for the MIMO system based on differential metrics,” in Proc. IEEE WCNC 2015, pp. 603-608, Mar. 2015.
[10].R. F. H. Fischer and C. Windpassinger, “Real versus complex-valued equalization in V-BLAST systems,” IEEE Electron. Lett., vol. 39, no. 5, pp. 470-471, Mar. 2003.
[11].M.-X. Chang and W.-Y, Chang, “Maximum likelihood detection for MIMO systems based on differential metrics,” IEEE Trans. Signal Process., vol. 65, no. 14, pp. 3718-3732, Jul. 2017.
[12].M.-X. Chang and W.-Y. Chang, “Efficient detection for MIMO systems based on gradient search,” IEEE Trans. Veh. Technol., vol. 65, no, 12, pp. 10057-10063, Dec. 2016.