| 研究生: |
侯孟新 How, Mon-Hsin |
|---|---|
| 論文名稱: |
多孔幾丁聚糖改質膠體對於不同重金屬離子之吸附研究 Modified chitosan hydrogel and its characteristics on various heavy metals |
| 指導教授: |
廖峻德
Liao, Jiun-De |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 三聚磷酸鹽 、金屬吸附 、電漿表面改質 、金屬脫附 、幾丁聚糖膠體 |
| 外文關鍵詞: | tripolyphosphate, metal ion adsorption, plasma surface modification, chitosan hydrogel bead, metal ion desorption |
| 相關次數: | 點閱:83 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究使用幾丁聚醣為基材,利用三聚磷酸鹽以及氫氧化鈉將其製備為膠體以及薄膜,經由冷凍乾燥後可以將膠體以及薄膜乾燥。乾燥後的幾丁聚糖膠體直徑為3 mm而薄膜的厚度為2 mm。乾燥後的膠體以及薄膜接著置於微波電漿改質機台中進行氨氣或氬氣的改質。首先,藉由化學分析電子光譜儀可以觀察到經由氨氣電漿改質的薄膜,其化學結構上的改變。接著,經由感應式偶合電漿質譜儀可以分析幾丁聚糖膠體對於低濃度的銅離子以及鎳離子的吸附特性。而完成吸附的膠體可以藉由1 M的硫酸進行脫附反應並以感應式偶合電漿質譜分析儀進行分析。最後,由以上的實驗可以得到電漿改質對於幾丁聚糖膠體在吸附以及脫附能力上的影響。實驗結果顯示以2%的幾丁聚醣-醋酸溶液滴入2 g氫氧化鈉以及2 g的三聚磷酸鹽中成形的幾丁聚糖膠體可以在較短的時間內成形。依據感應式偶合電漿質譜分析儀定量金屬吸附實驗的結果可以得到幾丁聚醣膠體對於銅離子的吸附選擇性大於鎳離子,而幾丁聚醣膠體在pH 5.1環境時的吸附量大於在pH 2.1。比較電漿改質對於幾丁聚醣膠體吸附的影響可以發現經由氨氣電漿改質後其吸附速率大於氬氣電漿改質以及未改質的幾丁聚醣膠體。由化學分析電子光譜儀可以發現幾丁聚醣在吸附金屬後,可以於金屬的束縛能位置(銅: 933.1 eV;鎳:852.5 eV)發現峰值,如此可以得知金屬被幾丁聚醣所吸附。比較氨氣電漿改質以及未改質的幾丁聚醣可以發現10秒氨氣電漿改質後的幾丁聚醣其N/C比增加10%,因此推論藉由氨氣電漿改質所增加的氮含量為促進幾丁聚醣膠體吸附速度的原因。對於完成吸附的幾丁聚醣膠體進行脫附實驗可以發現經由氨氣電漿改質與未經電漿改質之膠體均可以脫附60%以上的金屬離子。
In this study, chitosan was prepared in a form of hydrogel bead and of thin film using tripolyphosphate and sodium hydroxide as the cross-linking agent. The as-prepared chitosan hydrogel beads and films were then frozen and dried. Beads with a rough diameter of 3 mm and films with a thickness of 2 mm were thereafter obtained. The dried chitosan beads and films were furthermore modified by either argon or ammonia plasma. New chemical structures on the plasma-modified chitosan film were measured using XPS (X-ray Photoelectron Spectroscopy). The low concentration copper or nickel-ions containing solution was used for the evaluation of beads’ adsorption characteristic and analyzed by ICP-MS (Inductively Coupled Plasma/Mass Spectroscopy). Desorption rate of the post-adsorption beads was conducted in 1 M sulfuric acid, while the change of low concentration metal ions was also analyzed by ICP-MS. The adsorption-desorption effect of the plasma-modified chitosan-containing beads was thereafter discussed. Experimental results exhibited that the formation of hydrogel beads was completed within short preparation time using 2% chitosan-acetic acid solution in 2 g of tripolyphosphate and 2 g of sodium hydroxide. The as-prepared chitosan hydrogel beads were capable to adsorb more copper ions, in comparison with nickel ions. At the same time, the adsorption capacity exhibited higher at the pH value of 5.1 than that of 2.1, while ammonia plasma treatment is much efficient than argon plasma treatment on the adsorption rate of the plasma-modified chitosan hydrogel beads. From XPS, metallic species could be found on the chitosan hydrogel film at the binding energies of 933.1 eV for the copper-N bond and 852.5 eV for the nickel-N bond, which showed the presence of metal ions on chitosan. The N/C ratio increased 10% after 10 sec of ammonia plasma treatment. The increase of nitrogen content on the ammonia plasma treated chitosan resulted in the increase of ion adsorption rate. Desotpion rate of the ion-containing samples was capable to reach 60% by adding 1 M sulfuric acid.
1. 研究發展委員會,國內外經濟情勢分析,中華民國經濟部,一月號,pp 1-7,2006。
2. 林清木,環境保護與管理對策,財團法人徐氏基金會,ch. 3,pp 61-92,1991。
3. 楊肇政,污染防治,全威圖書有限公司,ch. 1,pp 6-14,2001
4. M. H. Martin and P. J. Coughtrey, biological monitoring of heavy metal pollution, Applied Science Publishers, ch. 1, pp 1-3, 1982
5. 行政院勞工委員會,重金屬對勞工免疫功能之影響之初步調查,勞工安全衛生研究所, 1997。
6. 郭育良,台灣地區典型都會區居民重金屬氣膠暴露健康風險評估之研究 :以人體毛髮、指甲或血中之鉛、鎘為指標之健康風險評估,行政院環保署,1997。
7. F. W. Oehme, Toxicity of heavy metals in the environment, M. Dekker, ch. 2, pp 9-16, 1979.
8. B. Biskup and B. Subotic, “Kinetic analysis of the exchange processes between sodium ions from zeolite A and cadmium, copper and nickel ions from solutions”, Separation and Purification Technology, Vol. 37, pp 17-31, 2004.
9. J. N. Lester, Heavy metals in wastewater and sludge treatment process, CRC Press, ch. 4, 83-86, 1987.
10. Y. Benito and M. L. Ruiz, “Reverse osmosis applied to metal finishing wastewater”, Desalination, Vol. 142, pp 229-234, 2002.
11. O. Souilah, D. E. Akretche and M. Amara, “Water reuse of an industrial effluent by means of electrodeionisation”, Desalination, Vol. 167, pp 49-54, 2004.
12. L. K. Jang, D. Nguyen and G. G. Geesey, “An equilibrium model for absorption of multiple divalent metals by alginate gel under acidic conditions”, Water Research, Vol. 33, pp 2826-2832, 1999.
13. A. H. M. Veeken, H. V. M. Hamelers, “Removal of heavy metals from sewage sludge by extraction with organic acids”, Water Science and Technology, Vol. 40, pp 129-136, 1999.
14. M. Goyal, V. K. Rattan, D. Aggarwal and R. C. Bansal, “Removal of copper from aqueous solutions by adsorption on activated carbons”, Colloids and Surfaces, Vol. 190, pp 229-238, 2001.
15. S. Tandy, K. Bossart, R. Mueller, J. Ritschel, L. Hauser, R. Schulin and B. Nowack, “Extraction of heavy metals from soils using biodegradable chelating agents” , Environmental Science Technology, Vol. 38, pp 937-944, 2004.
16. R. Celis, M. C. Hermosin and J. Cornejo, “Heavy metal adsorption by functional clays”, Environmental Science Technology, Vol. 34, pp 4593-4599, 2000.
17. H. F. Koch and D. M. Roundhill, “Removal of mercury(II) Nitrate and other heavy metal ions from aqueous solution by a thiomethylated lignin material”, Separation Science and Technology, Vol. 36, pp 137-143, 2001.
18. A. Kapoor and T. Viraraghavan, “Fungal biosorption — an alternative treatment option for heavy metal bearing wastewaters: a review”, Bioresource Technology, Vol. 53, pp 195-206, 1995.
19. O. Gyliene, R. Rekertas and M. Salkauskas ”Removal of free and complexed heavy-metal ions by sorbents produced from fly (Musca domestica) larva shells”, Water Research, Vol.36, pp 4128-4136, 2002.
20. Y. Kawamura, M. Mitsuhashi, H. Yoshida and H. Tanibe, “Adsorption of Metal Ions on Polyaminated Highly Porous Chitosan Chelating Resin”, Industrial Engineering Chemical Research, Vol. 32, pp 386-391, 1993.
21. O. A. C. Monteiro Jr and C. Airoldi, “Some Thermodynamic Data on Copper–Chitin and Copper–Chitosan Biopolymer Interactions”, Journal of Colloid and Interface Science, Vol. 212, pp 212-219, 1999.
22. L. Jin and R. Bai, “Mechanisms of Lead Adsorption on Chitosan/PVA Hydrogel Beads” Langmuir, Vol. 18, pp 9765-9770, 2002.
23. L. Dambies, C. Guimon, S. Yiacoumi and E. Guibal, “Characterization of metal ion interactions with chitosan by photoelectron spectroscopy”, Colloids and Surfaces A, Vol. 177, pp 203-214, 2001.
24. F. L. Mi, S.S. Shyu, S. T. Lee and T. B. Wong, “Kinetic Study of Chitosan-Tripolyphosphate Complex Reaction and Acid-Resistive Properties of the Chitosan-Tripolyphosphate Gel Beads Prepared by in-Liquid Curing Method”, Journal of Polymer Science: Part B: Polymer Physics, Vol. 57, pp 1551-1564, 1999.
25. C. Jeon and K. H. Park, “Adsorption and desorption characteristics of mercury ions using aminated chitosan bead”, Water Research, Vol.39, pp 3938-3944, 2005.
26. N. Li and R. Bai, “Copper adsorption on chitosan–cellulose hydrogel beads: behaviors and mechanisms”, Separation and Purification Technology, Vol. 42, pp 237-247, 2005.
27. J. Kurdi, H. Ardelean, P. Marcus, P. Jonnard and F. Arefi-Khonsari, “ Adhesion properties of aluminum-metallized/ammonia plasma-treated polypropylene spectroscopic analysis (XPS, EXES) of the aluminum/polypropylene interface”, Applied Surface Science, Vol. 189, pp 119-128, 2002.
28. S. B. Rejeb, M. Tatoulian, F. A. Khonsari, N. F. Durand, A. Martel, J. F. Lawrence, J. Amouroux and F. Le Goffic, “Functionalization of nitrocellulose membranes using ammonia plasma for the covalent attachment of antibodies for use in membrane-based immunoassays”, Analytica Chimica Acta, Vol. 376, pp 133-138, 1998.
29. 江晃榮,生物技術的健康結晶甲殼素的療效,世茂出版社,pp 20-30,2000。
30. E. Guibal, C. Milot and J. Roussy, “Molybdate Sorption by Cross-Linked Chitosan Beads: Dynamic Studies”, Vol.71, pp 10-17, 1999.
31. E. Piron, M. Accominotti and Alain Domard, “Interaction between Chitosan and Uranyl Ions. Role of Physical and Physicochemical Parameters on the Kinetics of Sorption”, Vol. 13, pp 1653-1658, 1997.
32. 江晃榮,幾丁質、幾丁聚醣的發現與研發,世茂出版社,pp 37-47,1998。
33. Y. Xu and Y. Du, “Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles”, International Journal of Pharmaceutics, Vol. 250, pp 215-226, 2003.
34. Y. J. Park, Y. M. Lee, S. N. Park, S. Y. Sheen, C. P. Chung and S. J. Lee, “Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration”, Biomaterials, Vol. 21, pp 153-159, 2000.
35. Q. Yang, F. Dou, B. Liang and Q. Shen, “Studies of cross-linking reaction on chitosan fiber with glyoxal”, Carbohydrate Polymers, Vol. 59, pp 205-210, 2005.
36. Z. Cao, H. Ge and S. Lai, ”Studies on synthesis and adsorption properties of chitosan cross-linked by glutaraldehyde and Cu(II) as template under microwave irradiation”, European Polymer Journal, Vol. 37, pp 2141-2143, 2001.
37. 蕭奧,張有義,郭蘭生,膠體及界面化學入門,高立出版,pp 15-30,1997。
38. J. E. Elliott, M. Macdonald, J. Nie and C. Bowman, “Structure and swelling of poly(acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure”, Polymer, Vol. 45, pp 1503-1510, 2004.
39. M. Hitoshi, R. Giuseppe, C. Tommasina, Y. Yoshiaki and U. Hiroshi, “Low-degree oxidized scleroglucan and its hydrogel”, International Journal of Biological Macromolecules, Vol. 28, pp 351-358, 2001.
40. H. Nie, M. Liu, F. Zhan and M. Guo, “Factors on the preparation of carboxymethylcellulose hydrogel and its degradation behavior in soil”, Carbohydrate Polymers, Vol. 58, pp 185-189, 2004.
41. C. F. Rousseau and C. H. Gagnieu, “In vitro cytocompatibility of porcine type I atelocollagen crosslinked by oxidized glycogen”, Biomaterials, Vol.23, pp 1503-1510, 2002.
42. C. K. Kuo and P. X. Ma, “Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties”, Biomaterials, Vol. 22, pp 511-521, 2001.
43. J. S. Park, J. W. Park and E. Ruckenstein, “Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels”, Polymer, Vol. 42, pp 4271-4280, 2001.
44. W. E. Hennink, S. J. De Jong, G. W. Bos, T. F. J. Veldhuis and C. F. van Nostrum, “Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical protein”, International Journal of Pharmaceutics, Vol. 277, pp 99-104, 2004.
45. A. Grill, Cold plasma in materials fabrication, IEEE Press, ch. 1, pp. 1-9, 1994.
46. F. I. Boley, Plasmas: laboratory and cosmic, Van Nostrand, ch. 1, pp 13-15, 1966.
47. H. Biederman and Y. Osada, Plamsa polymerization process, Elsevier Science Publishers, ch. 3, pp 25-35, 1992
48. Y. L. Hsieh, M. Wu, “Residual reactivity for surface grafting of acrylic acid on argon glow-discharged PET films”, Journal of Applied Polymer Science, Vol. 43, pp 2067-2082, 1991.
49. O. Gyliene, R. Rekertas and M. Salkauskas ”Removal of free and complexed heavy-metal ions by sorbents produced from fly (Musca domestica) larva shells”, Water Research, Vol.36, pp 4128-4136, 2002.
50. M. S. Dzul Erosa, T. I. Saucedo Medina, R. Navarro Mendoza, M. Avila Rodriguez, and E. Guibal “Cadmium sorption on chitosan sorbents: kinetic and equilibrium studies”, Hydrometallurgy, Vol. 61, pp 157-167, 2001.
51. B. S. Noah, K. Nataliya and M. Borisover, “Copper-binding efficacy of water-soluble chitosans: characterization by aqueous binding isotherms”, Chemosphere, Vol. 59, pp 1309-1315, 2005.
52. M. Rhazi, J. Desbrieres, A. Tolaimate, M. Rinaudo, P. Vottero and A. Alagui, “Contribution to the study of the complexation of copper by chitosan and oligomers”, Polymer, Vol. 43, pp 1267-1276, 2002.
53. J. Guzman, I. Saucedo, R. Navarro, J. Revilla and E. Guibal, “Vanadium Interactions with Chitosan: Influence of Polymer Protonation and Metal Speciation”, Langmuir, Vol. 18, pp 1567-1573, 2002.
54. N. Lomadze and H. J. Schneider, “A chitosan-based chemomechanical polymer triggered by stacking effects with aromatic effectors including aminoacid derivatives”, Tetrahedron, Vol. 61, pp 8694-8698, 2005.
55. G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers, John Wiley and Sons, 1992.
56. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Inc, 1995.
57. N. H. Turner, “X-ray photoelectron and auger electron spectroscopy”, Applied Spectroscopy Reviews, Vol. 35, pp 203-254, 2000.
58. K. E. Jarvis, A. L. Gray and R. S. Houk, Inductively Coupled Plasma Mass Spectrometry, Blackie Academic & Professional, ch. 2, pp 10-54, 1994.
59. L. Jin and R. Bai, “Mechanisms of lead adsorption on chitosan/PVA hydrogel beads”, Langmuir, Vol. 18, pp 9765-9770, 2002.
60. M. S. Chiou and H. Y. Li, “Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads”, Chemosphere, Vol. 50, pp 1095-1105, 2003
61. Guibai, “Interactions of metal ions with chitosan-based sorbents: a review”, Separation and Purification Technology, Vol. 38, pp 43-74, 2004.
62. F. Arefi-Khonsari, J. Kurdi, M. Tatoulian and J. Amouroux, “On plasma processing of polymers and the stability of the surface properties for enhanced adhesion to metals”, Surface and Coating Technology, Vol. 142, pp437-448, 2002.