| 研究生: |
黃士豪 Huang, Shih-Hao |
|---|---|
| 論文名稱: |
應用擴增實境及建築資訊模型於維護作業之空間分析-以機電設備為例 Employing Augmented Reality and BIM in the Spatial Analysis of the Maintenance Operation-A Case Study of MEP Facilities |
| 指導教授: |
馮重偉
Feng, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 擴增實境 、建築資訊模型 、設備維護管理 、機電系統 |
| 外文關鍵詞: | Augmented Reality, BIM, Facility Maintenance Management, MEP System |
| 相關次數: | 點閱:103 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
建築設備必須藉由定期的檢修以及緊急故障維護以維持正常的使用機能,其中,設備的故障事件往往會導致建築物喪失機能而產生安全或是經濟上的問題,必須盡快地排解故障事件,以最短的時間及最低的成本回復建築物應有之機能。因此,如何有效地進行設備維護作業,乃工程管理的重要課題之一。到目前為止,已有不少研究提出以BIM模型整合維護資訊的研究架構,並藉由COBie表單等工具做為資訊交付之基準。然而,目前的研究對於機電設備於維護空間的分析上並沒有太多的著墨,雖然近幾年已有相關研究透過BIM模型檢討維護作業之空間需求,但BIM模型本身存在限制,包含完全虛擬的分析環境以及模型元件的精細度不足等等,導致以BIM模型獲得的維護空間資訊,並無法充分滿足實際作業上所可能遇到的問題及其資訊需求。
為了解決上述問題,本研究將使用擴增實境(Augmented Reality, AR)技術,建構現地維護作業空間分析之機制,藉由擴增實境結合虛境、實境的能力,在不移動實際設備的情況下,於三維空間上移動虛擬的機電設備,並使之與環境互動,以模擬各種衝突產生的可能,做為日後設備維護的依據。本研究提出結合BIM模型與擴增實境的維護模擬架構,藉由BIM模型規劃初步的設備維護作業,再透過擴增實境的現地分析機制,驗證維護模擬之內容並且針對實際環境進行更詳細的維護空間分析,使設備維護模擬內容更加完整且符合實際維護作業之需求。
In order to keep buildings in good condition, MEP facilities must be maintained by regular and emergency failure maintenance. Failure events of facilities often lead to malfunction and even cause safety problems. When failure event occurs, it is required to be resolved by maintenance operations as soon as possible, so that the building function could be restored without too much loss or even damage. When it comes to maintenance operations, it is critical to carry out facility maintenance efficiently. To achieve this target, maintainers are required to acquire sufficient knowledge of facilities and also information about the environment of maintenance operations. So far, there have been studies improving maintenance process with Building Information Modeling (BIM) and relative tools such as COBie spreadsheet. However, researches about spatial analysis for maintenance, which is to obtain environment information, are rare and needed to be improved.
This study employs Augmented Reality (AR) and BIM to construct a mechanism for maintenance simulation and on-site spatial analysis. BIM is used to propose a maintenance plan via 3D simulation, and AR is applied to implement on-site spatial analysis. With the on-site analysis mechanism, the content of previous plan can be verified and more details of actual environment can be discovered. With the proposed framework, the information of maintenance can be more complete and meets the needs of actual maintenance operations.
[1]. Azuma, R. T. (1997). “A Survey of Augmented Reality.” Teleoperators and Virtual Environments, 6(4), 355-385.
[2]. Becerik-Gerber, B., Jazizadeh, F., Li, N., and Calis, G. (2012). Application Areas and Data Requirements for BIM-Enabled Facilities Management, Journal of Construction Engineering and Management, 138, Issue 3.
[3]. Behzadan, A. H., Dong, S., &Kamat, V. R. (2015). Augmented reality visualization: A review of civil infrastructure system applications. Advanced Engineering Informatics, 29(2), 252–267.
[4]. Central Washington University, Service. Maintenance and Capital Definition. Retrieved from http://www.cwu.edu/facility/service-maintenance-and-capital-definitions
[5]. Federal Information Processing Standards Publications. (1993). Integrated Definition for Function Modeling (IDEF0). Retrieved from http://www.idef.com/wp-content/uploads/2016/02/idef0.pdf
[6]. GitHub – Microsoft/MixedRealityToolkit-Unity, (2017), MixedRealityToolkit-Unity Website, https://github.com/Microsoft/MixedRealityToolkit-Unity
[7]. IFMA, 2001, Retrieved from http://www.ifma.org/, International Facilities Management Association (IFMA), 2001.
[8]. Jad Chalhoub and Steven K. Ayer. (2017). Using Mixed Reality for electrical construction design communication. Automation in Construction, 86, 1-10.
[9]. Katipamula, S., and Brambley, M.R. (2005). Review Article: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems—A Review, Part I”, HVAC&R Research, 11:1, 3-25.
[10]. Koch, C., Neges, M., König, M., &Abramovici, M. (2014). Natural markers for augmented reality-based indoor navigation and facility maintenance. Automation in Construction, 48, 18–30.
[11]. Kuo, C., Jeng, T., &Yang, I. (2013). An invisible head marker tracking system for indoor mobile augmented reality. Automation in Construction, 33, 104–115.
[12]. Kwon, O. S., Park, C. S., &Lim, C. R. (2014). A defect management system for reinforced concrete work utilizing BIM, image-matching and augmented reality. Automation in Construction, 46, 74–81.
[13]. Lin, Y. C. and Su, Y. C. (2013). Developing Mobile- and BIM-Based Integrated Visual Facility Maintenance Management System. The Scientific World Journal, 2013.
[14]. Lucas, J., Bulbul, T., and Thabet, W. (2013). An object-oriented model to support healthcare facility information management, Automation in Construction, 31, 281-291.
[15]. McArthur, J.J. (2015). A Building Information Management (BIM) Framework and Supporting Case Study for Existing Building Operations, Maintenance and Sustainability. Procedia Engineering, 118, 1104-1111.
[16]. Meža, S., Turk, Ž., &Dolenc, M. (2014). Component based engineering of a mobile BIM-based augmented reality system. Automation in Construction, 42, 1–12.
[17]. Microsoft Mixed Reality Academy, (2015), Mixed Reality Academy Website, https://developer.microsoft.com/en-us/windows/mixed-reality/academy
[18]. Milgram, P. and Colquhoun, H. (1994). A Taxonomy of Real and Virtual World Display Integration. IEICE Transactions on Information Systems, E77-D, No.12.
[19]. OmniClass Development Committee. (2006). OmniClass: Introduction and User’s Guide, US: OCCS Development Committee.
[20]. OmniClass Development Committee. (2006). OmniClass: Table 21- Elements, US: OCCS Development Committee.
[21]. Palmarini, R., Erkoyuncu, J. A., Roy, R., &Torabmostaedi, H. (2018). A systematic review of augmented reality applications in maintenance. Robotics and Computer-Integrated Manufacturing, 49(July 2017), 215–228.
[22]. Schilit B., Theimer M. (1994). Disseminating Active Map Information to mobile Hosts. IEEE Network September/October.
[23]. Sullivan, G.P., Pugh, R., Melendez, A.P., and Hunt, W.D. (2010). Operations & Maintenance Best Practices: A Guide to Achieving Operational Efficiency. Richland: Pacific Northwest National Laboratory.
[24]. Unity Scripting API, (2017), Scripting API Website, https://docs.unity3d.com/2017.4/Documentation/ScriptReference/
[25]. Wang, L. and F. Leite. (2014). Comparison of Experienced and Novice BIM Coordinators in Performing Mechanical, Electrical, and Plumbing (MEP) Coordination Tasks. Construction Research Congress 2014, 21-30.
[26]. Wang, X., Kim, M. J., Love, P. E. D., &Kang, S. C. (2013). Augmented reality in built environment: Classification and implications for future research. Automation in Construction, 32, 1–13.
[27]. Wang, X., Love, P. E. D., Kim, M. J., Park, C. S., Sing, C. P., &Hou, L. (2013). A conceptual framework for integrating building information modeling with augmented reality. Automation in Construction, 34, 37–44.
[28]. Wang, X., Truijens, M., Hou, L., Wang, Y., &Zhou, Y. (2014). Integrating Augmented Reality with Building Information Modeling: Onsite construction process controlling for liquefied natural gas industry. Automation in Construction, 40, 96–105.
[29]. 士林電機(2017)。油浸式變壓器電子型錄。取自http://www.seec.com.tw/Content/Goods/GCont.aspx?SiteID=10&MmmID=655575436061073254&CatId=2015120316265146005&MSID=655575456531211553#ad-image-0
[30]. 吳柏正,建立符合機電設備緊急維護情況之BIM模型–以空調設備為例,碩士論文,國立成功大學土木工程學研究所,台南市,2017。
[31]. 科技政策研究與資訊中心(2007)。魚骨圖、因果圖與問題解決思考流程。取自http://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=3037
[32]. 建築技術規則建築設備編,法務部,全國法規資料庫,2014。
[33]. 劉明國,建築物用途別之分類研究及建築物之使用管理,中華民國建築學會(內政部營建署委託),1987
[34]. 鍾明鴻,設備管理,超越企業顧問管理股份有限公司,台北市,1997。