| 研究生: |
林以芯 Lin, Yi-Xin |
|---|---|
| 論文名稱: |
過渡金屬氫氧化物成長在鎳基板應用於超級電容器 Multi-element hydroxides grown on Ni-foam as binder-free electrodes for supercapacitor |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 超級電容 、傳統水熱法 、過渡金屬元素 、多元金屬氫氧化物 |
| 外文關鍵詞: | Supercapacitor, Hydrothermal, Multi-element hydroxide |
| 相關次數: | 點閱:98 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用一步驟水熱法成功合成多元之過渡金屬氫氧化物,將材料直接成長於基板上,藉由調整前驅物之過渡金屬元素(鈷、鎳、錳、鐵、鈦)種類多寡,以及調控系統中金屬元素添加之比例,以達到最佳之調配組合,得到卓越之電性表現,並成功應用於超級電容器,由於在材料合成之過程中,鎳發泡基板會參與反應,因此本研究採用面積之方式,以計算電容值,更加具有說服力,本材料在電流密度為1mA/cm2下之比電容值高達2,273 mF/cm2,與高電流密度為10 mA/cm2下電容值為911 mF/cm2,進而計算得到電容保有率(Rate Capability)為40.1%,使用三極式系統進行測試,本材料在經歷五千圈循環壽命之測試後,仍具有極佳之庫倫效率,藉由材料儀器分析,探討各個過渡金屬元素提供之電子價數對於整體材料表現之因果關係,更深入探究材料機制以及暸解其原理。
In this work, we have studied a novel supercapacitor electrode made out of a mixed transition metal hydroxide directly grown on Ni foam. The mixed transition metal hydroxide, Co-Ni-Mn-Fe(OH)2, was synthesized using a one-pot synthesis involving hydrothermal treatment. Fixed the precursor concentration, hydrothermal time as well as hydrothermal temperature. The result show that simply varying the ratio of the transition metal elements would lead to the formation of Co-Ni-Mn-Fe(OH)2 nanostructures having different morphologies. The amount of the Cobalt element increased, the retention improved. Multi-element hydroxides enhance the capacitive performance and electrochemical performance due to its multi valence for Faradaic redox reaction. Several material characterizations and electrochemical tests were performed. Moreover, we demonstrate that the novel electrode gives very excellent specific capacitance of 2,273 mF/cm2 and column efficiency after 5,000 cycles in three electrode system.
[1] Liang, Y. (2010). Nano Res. 2010, 3, 701-705;(b) Wang, H.; Casalongue, HS; Liang, Y.; Dai, H. J. Am. Chem. Soc, 132, 7472-7477.
[2] Li, J., Yang, M., Wei, J., & Zhou, Z. (2012). Preparation and electrochemical performances of doughnut-like Ni (OH) 2–Co (OH) 2 composites as pseudocapacitor materials. Nanoscale, 4(15), 4498-4503.
[3] Li, J., Yang, M., Wei, J., & Zhou, Z. (2012). Preparation and electrochemical performances of doughnut-like Ni (OH) 2–Co (OH) 2 composites as pseudocapacitor materials. Nanoscale, 4(15), 4498-4503.
[4] Shi, D., Zhang, L., Zhang, N., Zhang, Y. W., Yu, Z. G., & Gong, H. (2018). Boosted electrochemical properties from the surface engineering of ultrathin interlaced Ni (OH) 2 nanosheets with Co (OH) 2 quantum dot modification. Nanoscale, 10(22), 10554-10563.
[5] Nguyen, T., Boudard, M., Carmezim, M. J., & Montemor, M. F. (2017). Layered Ni (OH) 2-Co (OH) 2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors. Scientific reports, 7(1), 1-10.
[6] Wang, Y. G., Cheng, L., & Xia, Y. Y. (2006). Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution. Journal of power sources, 153(1), 191-196.
[7] Patil, U. M., Sohn, J. S., Kulkarni, S. B., Lee, S. C., Park, H. G., Gurav, K. V., ... & Jun, S. C. (2014). Enhanced supercapacitive performance of chemically grown cobalt–nickel hydroxides on three-dimensional graphene foam electrodes. ACS applied materials & interfaces, 6(4), 2450-2458.
[8] Chen, G., Liaw, S. S., Li, B., Xu, Y., Dunwell, M., Deng, S., ... & Luo, H. (2014). Microwave-assisted synthesis of hybrid CoxNi1− x (OH) 2 nanosheets: tuning the composition for high performance supercapacitor. Journal of Power Sources, 251, 338-343.
[9] Lien, C. H., Hu, C. C., Hsu, C. T., & Wong, D. S. H. (2013). High-performance asymmetric supercapacitor consisting of Ni–Co–Cu oxy-hydroxide nanosheets and activated carbon. Electrochemistry communications, 34, 323-326.
[10] Wang, H., Gao, Q., & Hu, J. (2010). Asymmetric capacitor based on superior porous Ni–Zn–Co oxide/hydroxide and carbon electrodes. Journal of Power Sources, 195(9), 3017-3024.
[11] Li, H., Gao, Y., Wang, C., & Yang, G. (2015). A Simple Electrochemical Route to Access Amorphous Mixed‐Metal Hydroxides for Supercapacitor Electrode Materials. Advanced Energy Materials, 5(6), 1401767.
[12] Zhou, J. J., Li, Q., Chen, C., Li, Y. L., Tao, K., & Han, L. (2018). Co3O4@ CoNi-LDH core/shell nanosheet arrays for high-performance battery-type supercapacitors. Chemical Engineering Journal, 350, 551-558.
[13] Wang, Y., Song, Y., & Xia, Y. (2016). Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 45(21), 5925-5950.
[14] Shao, Y., El-Kady, M. F., Sun, J., Li, Y., Zhang, Q., Zhu, M., ... & Kaner, R. B. (2018). Design and mechanisms of asymmetric supercapacitors. Chemical reviews, 118(18), 9233-9280.
[15] E. Frackowiak and F. Beguin, "Carbon materials for the electrochemical storage of energy in capacitors," Carbon, vol. 39, no. 6, pp. 937-950, 2001.
[16] S. Bose, T. Kuila, A. K. Mishra, R. Rajasekar, N. H. Kim, and J. H. Lee, "Carbon-based nanostructured materials and their composites as supercapacitor electrodes," Journal of Materials Chemistry, vol. 22, no. 3, pp. 767-784, 2012.
[17] G. Ferrero, M. Sevilla, and A. Fuertes, "Mesoporous carbons synthesized by direct carbonization of citrate salts for use as high-performance capacitors," Carbon, vol. 88, pp. 239-251, 2015.
[18] C.-W. Huang, C.-M. Chuang, J.-M. Ting, and H. Teng, "Significantly enhanced charge conduction in electric double layer capacitors using carbon nanotube-grafted activated carbon electrodes," Journal of Power Sources, vol. 183, no. 1, pp. 406-410, 2008.
[19] C.-C. Hu, W.-C. Chen, and K.-H. Chang, "How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors," Journal of the Electrochemical Society, vol. 151, no. 2, pp. A281-A290, 2004.
[20] H. Y. Lee and J. B. Goodenough, "Supercapacitor behavior with KCl electrolyte," Journal of Solid State Chemistry, vol. 144, no. 1, pp. 220-223, 1999.
[21] V. Augustyn, P. Simon, and B. Dunn, "Pseudocapacitive oxide materials for high-rate electrochemical energy storage," Energy & Environmental Science, vol. 7, no. 5, p. 1597, 2014.
[22] K. Byrappa and T. Adschiri, "Hydrothermal technology for nanotechnology," Progress in crystal growth and characterization of materials, vol. 53, no. 2, pp. 117-166, 2007.
[23] T. Wang, Y. Zhai, Y. Zhu, C. Li, and G. Zeng, "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, vol. 90, pp. 223-247, 2018.
[24] P. E. Savage, "Organic Chemical Reactions in Supercritical Water," Chemical Reviews, vol. 99, no. 2, pp. 603-622, 1999.
[25] Y. Gao, X.-H. Wang, H.-P. Yang, and H.-P. Chen, "Characterization of products from hydrothermal treatments of cellulose," Energy, vol. 42, no. 1, pp. 457-465, 2012.
[26] S. Liu et al., "Hierarchical MnCo-layered double hydroxides@ Ni (OH) 2 core–shell heterostructures as advanced electrodes for supercapacitors," Journal of Materials Chemistry A, vol. 5, no. 3, pp. 1043-1049, 2017.
[27] S. Sahoo, K. K. Naik, and C. S. Rout, "Electrodeposition of spinel MnCo2O4 nanosheets for supercapacitor applications," Nanotechnology, vol. 26, no. 45, p. 455401, 2015.
[28] F. Tao, Y.-Q. Zhao, G.-Q. Zhang, and H.-L. Li, "Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors," Electrochemistry Communications, vol. 9, no. 6, pp. 1282-1287, 2007.
[29] H. Wang, M. Liang, D. Duan, W. Shi, Y. Song, and Z. Sun, "Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance," Chemical Engineering Journal, vol. 350, pp. 523-533, 2018.
[30] G. Yu et al., "Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping," Nano letters, vol. 11, no. 10, pp. 4438-4442, 2011.
[31] F. N. I. Sari and J.-M. Ting, "Direct Growth of MoS 2 Nanowalls on Carbon Nanofibers for Use in Supercapacitor," Scientific reports, vol. 7, no. 1, p. 5999, 2017.
[32] D. Ribeiro and J. Abrantes, "Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: a new approach," Construction and Building Materials, vol. 111, pp. 98-104, 2016.
[33] Wang, H. Q., Fan, X. P., Zhang, X. H., Huang, Y. G., Wu, Q., Pan, Q. C., & Li, Q. Y. (2017). In situ growth of NiO nanoparticles on carbon paper as a cathode for rechargeable Li–O 2 batteries. RSC advances, 7(38), 23328-23333.
[34] Lei, N., Ma, P., Yu, B., Li, S., Dai, J., & Jiang, G. (2020). Anion-intercalated supercapacitor electrode based on perovskite-type SrB0. 875Nb0. 125O3 (B= Mn, Co). Chemical Engineering Journal, 127790.
[35] Pasquali, L., Doyle, B. P., Borgatti, F., Giglia, A., Mahne, N., Pedio, M., ... & Sokolov, N. S. (2006). Cobalt on calcium fluoride: Initial stages of growth and magnetic properties. Surface science, 600(18), 4170-4175.
[36] Nesbitt, H. W., & Banerjee, D. (1998). Interpretation of XPS Mn (2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. American Mineralogist, 83(3-4), 305-315.
[37] Grosvenor, A. P., Kobe, B. A., Biesinger, M. C., & McIntyre, N. S. (2004). Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 36(12), 1564-1574.
[38] Liu, B. T., Zhao, M., Han, L. P., Lang, X. Y., Wen, Z., & Jiang, Q. (2018). Three-dimensional nanoporous N-doped graphene/iron oxides as anode materials for high-density energy storage in asymmetric supercapacitors. Chemical Engineering Journal, 335, 467-474.
[39] Li, X. Z., Li, F. B., Yang, C. L., & Ge, W. K. (2001). Photocatalytic activity of WOx-TiO2 under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 141(2-3), 209-217
校內:2026-01-01公開