簡易檢索 / 詳目顯示

研究生: 林以芯
Lin, Yi-Xin
論文名稱: 過渡金屬氫氧化物成長在鎳基板應用於超級電容器
Multi-element hydroxides grown on Ni-foam as binder-free electrodes for supercapacitor
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 57
中文關鍵詞: 超級電容傳統水熱法過渡金屬元素多元金屬氫氧化物
外文關鍵詞: Supercapacitor, Hydrothermal, Multi-element hydroxide
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用一步驟水熱法成功合成多元之過渡金屬氫氧化物,將材料直接成長於基板上,藉由調整前驅物之過渡金屬元素(鈷、鎳、錳、鐵、鈦)種類多寡,以及調控系統中金屬元素添加之比例,以達到最佳之調配組合,得到卓越之電性表現,並成功應用於超級電容器,由於在材料合成之過程中,鎳發泡基板會參與反應,因此本研究採用面積之方式,以計算電容值,更加具有說服力,本材料在電流密度為1mA/cm2下之比電容值高達2,273 mF/cm2,與高電流密度為10 mA/cm2下電容值為911 mF/cm2,進而計算得到電容保有率(Rate Capability)為40.1%,使用三極式系統進行測試,本材料在經歷五千圈循環壽命之測試後,仍具有極佳之庫倫效率,藉由材料儀器分析,探討各個過渡金屬元素提供之電子價數對於整體材料表現之因果關係,更深入探究材料機制以及暸解其原理。

    In this work, we have studied a novel supercapacitor electrode made out of a mixed transition metal hydroxide directly grown on Ni foam. The mixed transition metal hydroxide, Co-Ni-Mn-Fe(OH)2, was synthesized using a one-pot synthesis involving hydrothermal treatment. Fixed the precursor concentration, hydrothermal time as well as hydrothermal temperature. The result show that simply varying the ratio of the transition metal elements would lead to the formation of Co-Ni-Mn-Fe(OH)2 nanostructures having different morphologies. The amount of the Cobalt element increased, the retention improved. Multi-element hydroxides enhance the capacitive performance and electrochemical performance due to its multi valence for Faradaic redox reaction. Several material characterizations and electrochemical tests were performed. Moreover, we demonstrate that the novel electrode gives very excellent specific capacitance of 2,273 mF/cm2 and column efficiency after 5,000 cycles in three electrode system.

    總目錄 摘要 II EXTENDED ABSTRACT III 誌謝 X 總目錄 XI 表目錄 XIII 圖目錄 XIV 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 第2章 理論背景與文獻回顧 4 2.1 超級電容之儲能機制 4 2.1.1 電雙層電容器 4 2.1.2 擬電容器 5 2.2 超級電容器的電極材料 6 2.2.1 電雙層電極材料 6 2.2.2 擬電容電極材料 8 2.3 電解液 9 2.4 水熱法(Hydrothremal Method) 10 2.5 本研究之重要性 15 第3章 實驗方法與分析原理 16 3.1 材料選擇 16 3.2 實驗設計 16 3.3 實驗材料與藥品 17 3.4 實驗流程與步驟 19 3.4.1 實驗流程圖 19 3.4.2 圖像化之實驗流程圖 20 3.4.3 實驗參數以及其代號表 20 3.5 分析方法 21 3.5.1 X光繞射儀(X-ray Diffraction Spectrometer, XRD) 21 3.5.2 場發掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope, FE-SEM) 22 3.5.3 穿透式電子顯微鏡(Transmission electron microscope, TEM) 23 3.5.4 循環伏安法(Cyclic Voltammetry, CV) 24 3.5.5 電化學阻抗分析法(Electrochemical Impedance Spectroscopy, EIS) 24 第4章 結果與討論 26 4.1 不同元素系統對材料特徵及性質影響 26 4.2 不同元素系統之材料其電化學性質 39 第5章 結論 53 第6章 參考文獻 54 表目錄 表1–1鋰離子電池與電雙層超級電容器之比較 2 表3–1鎳發泡基板之資訊 18 表3–2實驗藥品 18 表4–1 依序列加入更多之元素後,前驅物在不同種類下之命名 26 表4–2穿透式電子顯微鏡之能量色散X射線譜(TEM-EDS)分析C0.5N0.5M0.5F元素之重量比及原子數比 35 表4–3 不同元素系統下之材料電化學阻抗 43 圖目錄 圖1–1 電池種類之性能比較 1 圖1–2 超級電容器所涵蓋種類 3 圖2–1儲電機制:電雙層電容器、擬電容器 6 圖2–2 利用表面靜電力,使活性碳的孔洞吸附電解液中之陰陽離子,以進行EDLC電荷儲存機制之示意圖 7 圖2–3非晶MnO2*nH2O材料在2M氯化鉀水溶液中於掃描速率5mV/s之循環伏安曲線 8 圖2–4 水熱法之應用領域樹狀圖 11 圖2–5 各種材料製成技術的溫度與壓力關係圖 12 圖2–6 水熱法合成與其他技術之材料結構差別 12 圖2–7 壓力釜之裝置配件 13 圖2–8 (A)攪拌式反應水熱法 (B)分批式水熱法 (C)微波式水熱法 (D)水流式水熱法 14 圖3–1實驗設計圖 17 圖3–2實驗流程圖 19 圖3–3圖像化之實驗流程圖 20 圖3–4實驗參數與代號 20 圖3–5 X-ray繞射之示意圖 21 圖3–6場發掃描式電子顯微鏡之示意圖 22 圖3–7 Cryo功能性穿透式電子顯微鏡之示意圖 23 圖3–8 電化學阻抗分析圖與模擬電路圖 25 圖4–1 (A-B)C鈷 (C-D)CN鈷、鎳 (E-F)CNM鈷、鎳、錳 (G-H)CNMF鈷、鎳、錳、鐵 (I-J)C0.5N0.5M0.5F 非等莫耳之鈷、鎳、錳、鐵 (K-L)CNMFTi鈷、鎳、錳、鐵、鈦 (M-N) C0.5N0.5M0.5F0.5Ti 非等莫耳之鈷、鎳、錳、鐵、鈦,在掃描式電子顯微鏡低倍率、高倍率下之表面形貌 30 圖4–2 不同元素系統下之材料X光繞射圖譜 31 圖4–3 不同元素系為統之前驅物溶液pH值對照圖 32 圖4–4 C0.5N0.5M0.5F在穿透式電子顯微鏡下之形貌 33 圖4–5 C0.5N0.5M0.5F在高解析式穿透式電子顯微鏡下之形貌 33 圖4–6高解析式下得到的結果進行傅立葉轉換並加上遮罩,(111)方向之結晶面 34 圖4–7 TEM-EDS之能量圖譜 35 圖4–8 TEM-EDS Mapping之形貌 36 圖4–9 TEM-EDS之Element Mapping 37 圖4–10 C0.5N0.5M0.5F之分析圖(A)鈷Co (B)鎳Ni (C)錳Mn (D)鐵Fe (E)氧O 39 圖4–11不同元素系統下之電化學阻抗分析圖 42 圖4–12不同元素系統下之CV圖 44 圖4–13在不同掃描速率下,C0.5N0.5M0.5F對應之CV曲線電性表現 45 圖4–14 C0.5N0.5M0.5F在不同的電流密度下之GCD表現 46 圖4–15不同元素系統下之電容值對應電流密度圖 47 圖4–16不同元素系統下之Retention對應電流密度圖 47 圖4–17 Ni3+/Ni2+與Retention之關係圖 48 圖4–18 C0.5N0.5M0.5F經過兩千圈循環測試後之電性表現 49 圖4–19 C0.5N0.5M0.5F經過五千圈循環測試後之電性表現 49 圖4–20 C0.5N0.5M0.5F經過五千圈循環測試前後之SEM表面形貌 50 圖4–21在不同掃描速率下,不對稱電極對應之CV曲線電性表現 50 圖4–22在不對稱電極在不同的電流密度下之GCD表現 51 圖4–23 不對稱電極經過兩千圈循環測試後之電性表現 52

    [1] Liang, Y. (2010). Nano Res. 2010, 3, 701-705;(b) Wang, H.; Casalongue, HS; Liang, Y.; Dai, H. J. Am. Chem. Soc, 132, 7472-7477.
    [2] Li, J., Yang, M., Wei, J., & Zhou, Z. (2012). Preparation and electrochemical performances of doughnut-like Ni (OH) 2–Co (OH) 2 composites as pseudocapacitor materials. Nanoscale, 4(15), 4498-4503.
    [3] Li, J., Yang, M., Wei, J., & Zhou, Z. (2012). Preparation and electrochemical performances of doughnut-like Ni (OH) 2–Co (OH) 2 composites as pseudocapacitor materials. Nanoscale, 4(15), 4498-4503.
    [4] Shi, D., Zhang, L., Zhang, N., Zhang, Y. W., Yu, Z. G., & Gong, H. (2018). Boosted electrochemical properties from the surface engineering of ultrathin interlaced Ni (OH) 2 nanosheets with Co (OH) 2 quantum dot modification. Nanoscale, 10(22), 10554-10563.
    [5] Nguyen, T., Boudard, M., Carmezim, M. J., & Montemor, M. F. (2017). Layered Ni (OH) 2-Co (OH) 2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors. Scientific reports, 7(1), 1-10.
    [6] Wang, Y. G., Cheng, L., & Xia, Y. Y. (2006). Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution. Journal of power sources, 153(1), 191-196.
    [7] Patil, U. M., Sohn, J. S., Kulkarni, S. B., Lee, S. C., Park, H. G., Gurav, K. V., ... & Jun, S. C. (2014). Enhanced supercapacitive performance of chemically grown cobalt–nickel hydroxides on three-dimensional graphene foam electrodes. ACS applied materials & interfaces, 6(4), 2450-2458.
    [8] Chen, G., Liaw, S. S., Li, B., Xu, Y., Dunwell, M., Deng, S., ... & Luo, H. (2014). Microwave-assisted synthesis of hybrid CoxNi1− x (OH) 2 nanosheets: tuning the composition for high performance supercapacitor. Journal of Power Sources, 251, 338-343.
    [9] Lien, C. H., Hu, C. C., Hsu, C. T., & Wong, D. S. H. (2013). High-performance asymmetric supercapacitor consisting of Ni–Co–Cu oxy-hydroxide nanosheets and activated carbon. Electrochemistry communications, 34, 323-326.
    [10] Wang, H., Gao, Q., & Hu, J. (2010). Asymmetric capacitor based on superior porous Ni–Zn–Co oxide/hydroxide and carbon electrodes. Journal of Power Sources, 195(9), 3017-3024.
    [11] Li, H., Gao, Y., Wang, C., & Yang, G. (2015). A Simple Electrochemical Route to Access Amorphous Mixed‐Metal Hydroxides for Supercapacitor Electrode Materials. Advanced Energy Materials, 5(6), 1401767.
    [12] Zhou, J. J., Li, Q., Chen, C., Li, Y. L., Tao, K., & Han, L. (2018). Co3O4@ CoNi-LDH core/shell nanosheet arrays for high-performance battery-type supercapacitors. Chemical Engineering Journal, 350, 551-558.
    [13] Wang, Y., Song, Y., & Xia, Y. (2016). Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 45(21), 5925-5950.
    [14] Shao, Y., El-Kady, M. F., Sun, J., Li, Y., Zhang, Q., Zhu, M., ... & Kaner, R. B. (2018). Design and mechanisms of asymmetric supercapacitors. Chemical reviews, 118(18), 9233-9280.
    [15] E. Frackowiak and F. Beguin, "Carbon materials for the electrochemical storage of energy in capacitors," Carbon, vol. 39, no. 6, pp. 937-950, 2001.
    [16] S. Bose, T. Kuila, A. K. Mishra, R. Rajasekar, N. H. Kim, and J. H. Lee, "Carbon-based nanostructured materials and their composites as supercapacitor electrodes," Journal of Materials Chemistry, vol. 22, no. 3, pp. 767-784, 2012.
    [17] G. Ferrero, M. Sevilla, and A. Fuertes, "Mesoporous carbons synthesized by direct carbonization of citrate salts for use as high-performance capacitors," Carbon, vol. 88, pp. 239-251, 2015.
    [18] C.-W. Huang, C.-M. Chuang, J.-M. Ting, and H. Teng, "Significantly enhanced charge conduction in electric double layer capacitors using carbon nanotube-grafted activated carbon electrodes," Journal of Power Sources, vol. 183, no. 1, pp. 406-410, 2008.
    [19] C.-C. Hu, W.-C. Chen, and K.-H. Chang, "How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors," Journal of the Electrochemical Society, vol. 151, no. 2, pp. A281-A290, 2004.
    [20] H. Y. Lee and J. B. Goodenough, "Supercapacitor behavior with KCl electrolyte," Journal of Solid State Chemistry, vol. 144, no. 1, pp. 220-223, 1999.
    [21] V. Augustyn, P. Simon, and B. Dunn, "Pseudocapacitive oxide materials for high-rate electrochemical energy storage," Energy & Environmental Science, vol. 7, no. 5, p. 1597, 2014.
    [22] K. Byrappa and T. Adschiri, "Hydrothermal technology for nanotechnology," Progress in crystal growth and characterization of materials, vol. 53, no. 2, pp. 117-166, 2007.
    [23] T. Wang, Y. Zhai, Y. Zhu, C. Li, and G. Zeng, "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, vol. 90, pp. 223-247, 2018.
    [24] P. E. Savage, "Organic Chemical Reactions in Supercritical Water," Chemical Reviews, vol. 99, no. 2, pp. 603-622, 1999.
    [25] Y. Gao, X.-H. Wang, H.-P. Yang, and H.-P. Chen, "Characterization of products from hydrothermal treatments of cellulose," Energy, vol. 42, no. 1, pp. 457-465, 2012.
    [26] S. Liu et al., "Hierarchical MnCo-layered double hydroxides@ Ni (OH) 2 core–shell heterostructures as advanced electrodes for supercapacitors," Journal of Materials Chemistry A, vol. 5, no. 3, pp. 1043-1049, 2017.
    [27] S. Sahoo, K. K. Naik, and C. S. Rout, "Electrodeposition of spinel MnCo2O4 nanosheets for supercapacitor applications," Nanotechnology, vol. 26, no. 45, p. 455401, 2015.
    [28] F. Tao, Y.-Q. Zhao, G.-Q. Zhang, and H.-L. Li, "Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors," Electrochemistry Communications, vol. 9, no. 6, pp. 1282-1287, 2007.
    [29] H. Wang, M. Liang, D. Duan, W. Shi, Y. Song, and Z. Sun, "Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance," Chemical Engineering Journal, vol. 350, pp. 523-533, 2018.
    [30] G. Yu et al., "Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping," Nano letters, vol. 11, no. 10, pp. 4438-4442, 2011.
    [31] F. N. I. Sari and J.-M. Ting, "Direct Growth of MoS 2 Nanowalls on Carbon Nanofibers for Use in Supercapacitor," Scientific reports, vol. 7, no. 1, p. 5999, 2017.
    [32] D. Ribeiro and J. Abrantes, "Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: a new approach," Construction and Building Materials, vol. 111, pp. 98-104, 2016.
    [33] Wang, H. Q., Fan, X. P., Zhang, X. H., Huang, Y. G., Wu, Q., Pan, Q. C., & Li, Q. Y. (2017). In situ growth of NiO nanoparticles on carbon paper as a cathode for rechargeable Li–O 2 batteries. RSC advances, 7(38), 23328-23333.
    [34] Lei, N., Ma, P., Yu, B., Li, S., Dai, J., & Jiang, G. (2020). Anion-intercalated supercapacitor electrode based on perovskite-type SrB0. 875Nb0. 125O3 (B= Mn, Co). Chemical Engineering Journal, 127790.
    [35] Pasquali, L., Doyle, B. P., Borgatti, F., Giglia, A., Mahne, N., Pedio, M., ... & Sokolov, N. S. (2006). Cobalt on calcium fluoride: Initial stages of growth and magnetic properties. Surface science, 600(18), 4170-4175.
    [36] Nesbitt, H. W., & Banerjee, D. (1998). Interpretation of XPS Mn (2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. American Mineralogist, 83(3-4), 305-315.
    [37] Grosvenor, A. P., Kobe, B. A., Biesinger, M. C., & McIntyre, N. S. (2004). Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 36(12), 1564-1574.
    [38] Liu, B. T., Zhao, M., Han, L. P., Lang, X. Y., Wen, Z., & Jiang, Q. (2018). Three-dimensional nanoporous N-doped graphene/iron oxides as anode materials for high-density energy storage in asymmetric supercapacitors. Chemical Engineering Journal, 335, 467-474.
    [39] Li, X. Z., Li, F. B., Yang, C. L., & Ge, W. K. (2001). Photocatalytic activity of WOx-TiO2 under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 141(2-3), 209-217

    無法下載圖示 校內:2026-01-01公開
    校外:2026-01-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE