| 研究生: |
斯庫丹 Kundan, Sivashanmugan |
|---|---|
| 論文名稱: |
以聚焦離子束製備複合金屬奈米微結構為表面增顯拉曼散射基板應用於單分子及體外病毒檢測 Metal-Hybrid Nanostructures Fabricated by Focused Ion Beam as SERS-active Substrates for Single-Molecule and Virus in vitro Detection |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 188 |
| 中文關鍵詞: | 表面增強拉曼 、聚焦離子束 、金/銀奈米棒 、結晶紫 、病毒 、三聚氰胺 |
| 外文關鍵詞: | Surface enhanced Raman scattering, Focused ion beam, Au/Ag nanorod, Crystal violet, Virus, Melamine |
| 相關次數: | 點閱:99 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面增顯拉曼(SERS)是一種深受奈米加工技術影響的工藝。目前SERS增顯效果被發現它是是一種等離子體共振形成具有新的幾何結構以增強拉曼信號。在本研究中,聚焦離子束(FIB)方法被用來製造金/銀多層納米棒(NR)陣列,嵌入式Au和Ag層各種厚度的。 NR陣列的重複層的數量會影響拉曼活性物質的檢測。優化NR陣列施用於區分在非常低的濃度的A型流感病毒株。
利用FIB來製造光學性質的基板非常適合用來偵測具有拉曼活性的物種,不過FIB確有其缺點。例如,在FIB製備基板過程中會有鎵(Ga)的殘留,這會造成金/銀NR陣列的晶格損壞,所以為了解決此問題,我們提出瞭一個假設讓FIB光束傾斜一個角度,並對鎵濃度的多寡對基板表面SERS活性影響進行了研究。以低Ga含量對SERS活性表面導致電子振盪的離散多極等離子體模式沿長軸並降低光損耗和晶格破壞。並且利用各種分子探針,即結晶紫(CV),孔雀綠異硫氰酸酯(MG)和玫瑰紅,與被採用作為目標物種來偵測。
另外,利用熱處理的方式來處理金/銀奈米的幾何形狀基板。此處理後,一些鎵可以擴散到金屬基體或停留在奈米的最外表面。在金/銀NR陣列,漫射結構和由於增加的應力,這是主要因氧化和熱膨脹的影響嵌入nanovoids(NV)的結構中產生。在金的情況下,Ga的離子與在Au表面結構交互,修改所述表面化學。為了減少Ga的污染和對Au NR陣列低密度AuGa2形成經受低或高溫處理。並且研究使用CV作為分子探針測試熱處理後的SERS基板。將優化的Au NR陣列用來檢測具有低濃度氰尿酸三聚氰胺的牛奶溶液。
值得注意的是,SERS的增顯效果的強弱是隨著雷射激發光與目標物種相互作用而來。因此,換句話說具有高增顯的SERS基板才有實際應用。在這裡,利用FIB塑造一個局部凹表面金NR陣列NR之間的控制環的直徑。銀奈米顆粒(奈米顆粒)耦合之間的間隙,試圖改進SERS增顯效果,然後應用於檢測分子提供一個粗糙表面,特別是在低濃度的CV。利用凹NR來耦合用Ag奈米顆粒,如納米顆粒的Ag / Au的NR提高SERS增顯,如用在檢測非常低的濃度靶物質蜜胺。人們普遍認為,獲得高EF可以提高檢測的目標分子的靈敏度。在這種情況下,
利用FIB和電子束沉積液合併為銀奈米簇(NCS)上的ZnO nanodome(ND)陣列是以FIB來製備,它具有高單分子選擇性的SERS活性檢測奈米系統。對ZnO ND陣列與銀納米晶的在NDS上的側/頂面的各種尺寸的混合銀納米晶的SERS EF並且以CV作為探針分子進行了實驗。在一個優化的Ag奈米晶對ZnO ND陣列SERS的效果,並以極低濃度的MG驗證。將其結果與那些現有SERS增顯效果的基板相互比較。
The surface-enhanced Raman scattering (SERS) method is a technology that significantly benefits from progress in nanotechnology and nanofabrication. The optical and enhancement properties of SERS substrates have been found to be a plasmon resonant formation with novel geometries to enhance Raman signals. In the present study, the focused ion beam (FIB) method is employed to fabricate well ordered Au/Ag multilayered nanorod (NR) arrays with an embedded Au and Ag layer of various thicknesses. The number of repeated layers of NR arrays affects the detection of Raman-active species. Optimized NR arrays were applied to distinguish influenza A virus strains at very low concentrations.
The optical properties of FIB-fabricated nanostructures (NSs) may be suitable for Raman-active substrates. There still occur some drawbacks to NSs for use as photonic components. For example, FIB-fabricated NSs are strongly influenced by the residual gallium (Ga) concentration and have a limited aspect ratio. To decrease Ga concentration and lattice damage of Au/Ag NR arrays, the FIB beam was tilted at an angle. The influence of Ga concentration on the outermost surface of FIB-fabricated SERS-active NSs was studied. It is hypothesized that lower Ga content on the SERS-active surface leads to discrete multipole plasmon modes of electron oscillation along the long axis and reduces optical losses and lattice damage in the original structure. Various molecular probes, namely crystal violet (CV), malachite green isothiocyanate (MG), and rose bengal, with concentrations at a single molecule level were employed as the target species.
In addition, an annealing treatment is applied to recover the Au/Ag NSs after lattice damage and hold the formed geometry. After this treatment, some Ga remains and may diffuse into the metal matrix or remain on the outermost surface of NSs. In the Au/Ag NR arrays, diffused structures and embedded nanovoids (NV) structure were generated owing to an increase in stress, which was mostly caused by the effects of oxidation and heat expansion. In the case of Au, Ga ions interact with the Au surface structure, modifying the surface chemistry. In order to reduce Ga contamination and the formation of low-density AuGa2 on Au NR arrays were subjected to low or high-temperature treatment. The effect of temperature treatment on the SERS substrate was investigated using CV as a molecular test probe. Optimized Au NR arrays were applied to the detection of melamine cyanurate in milk solution at low concentrations.
Notably, the SERS effect highly varies with the size of the target species due to laser interaction strength. Therefore, a substrate with a high SERS effect is required for practical applications. Herein, FIB method was applied to shape a localized Au surface as Au NR arrays with a controlled ring diameter among NR. Ag nanoparticles (NPs) were coupled to bridge the gaps among NRs, tried to improve the available effect of SERS, and then paved to provide a roughened surface for detecting molecular species, especially at low concentrations of CV. Au NR was furthermore coupled with Ag NPs, as Ag NPs/Au NR to improve the effect of SERS for detecting target species such as melamine at very low concentrations. It is generally believed that obtaining high average EF can improve the sensitivity of detecting target molecules. In this case, FIB and e-beam deposition were combined for the fabrication of Ag nanoclusters (NCs) on a FIB-made ZnO nanodome (ND) arrays as a SERS-active nanosystem for high-selectivity single-molecule detection. The SERS EF of hybrid Ag NCs on ZnO ND arrays with various dimensions of Ag NCs on the side/top surface of NDs was examined with CV as the probe molecule. The effect of SERS on an optimized Ag NCs on ZnO ND arrays was then verified by sensing MG at extremely low concentrations. The results are compared with those for existing SERS-active substrates.
Reference
[1] C. N. Banwell, E. M. Mc Cash, “Fundamentals of molecular spectroscopy”, 4th ed. London: The McGraw-Hill Companies, 1994.
[2] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, “Surface-enhanced Raman scattering and biophysics”, Journal of Physics-Condensed Matter , Vol. 14(18), R597-R624, 2002.
[3] D. A. Long, “Raman spectroscopy”, McGraw-Hill, New York, 1977
[4] J. J. Laserna, “Modern techniques in raman spectroscopy”, John Wiley &Sons: 1996.
[5] P. A. Giguère, T. K. K Srinivasan, “Raman study of matrix isolated H2O2 and D2O2”, Chemical Physics Letters, Vol. 33, 479-482, 1975.
[6] R. C. Taylor, P. C. Cross, “Raman spectra of hydrogen peroxide in condensed phases. I. the spectra of the pure liquid and its aqueous solutions”, Journal of Chemical Physics, Vol. 24, 41-44, 1956.
[7] M. Fleischmann, P. Hendra, A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode”, Chemical Physics Letters, Vol. 26, 163, 1974.
[8] A. Campion, P. Kambhampati, “Surface-enhanced Raman scattering”, Chemical Society Reviews, Vol. 27(4), 241-250, 1998.
[9] G. C. Schatz, M. A. Young, R. P. Van Duyne, “Electromagnetic mechanism of SERS”, Vol. 103, 19-45, 2006.
[10] K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering”, Journal of the American Chemical Society, Vol. 125(2), 588-593, 2003.
[11] W. Gu, H. Choi, K. Kim, “A quantum mechanical theory for single molecule-single nanoparticle surface enhanced Raman scattering”, Journal of Physical Chemistry A, Vol. 111(33), 8121-8125, 2007.
[12] M. Moskovits, “Surface-enhanced spectroscopy”, Reviews of Modern Physics, Vol. 57(3), 783-826, 1985.
[13] R. Petry, M. Schmitt, J. Popp, “Raman spectroscopy - a prospective tool in the life sciences”, Chemphyschem, Vol. 4(1), 14-30, 2003.
[14] J. F. Arenas, M. S. Woolley, I. L. Tocon, J. C. Otero, J. I. Marcos, “Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states”, Journal of Chemical Physics, Vol. 112(17), 7669-7683, 2000.
[15] J. D. Jiang, E. Burstein, H. Kobayashi, “Resonan Raman scattering by crystal-violet molecules adsorbed on a smooth gold surface: evidence for a charge-transfer excitation”, Physical Review Letters, Vol. 57(14), 1793-1796, 1986.
[16] A. Campion, J. E. Ivanecky, C. M. Child, M. Foster, “On the mechanism of chemical enhancement in surface-enhanced Raman-scattering”, Journal of the American Chemical Society, Vol. 117(47), 11807-11808, 1995.
[17] M. J. Weaver, Z. Zou, S. Chan, “The new interfacial ubiquity of surface-enhanced Raman spectroscopy”, Analytical Chemistry, Vol. 72(1), 38A-47A, 2000.
[18] P. Kambhampati, C. M. Child, M. C. Foster, A. Campion, “On the chemical mechanism of surface enhanced Raman scattering: experiment and theory”, Journal of Chemical Physics, Vol. 108(12), 5013-5026, 1998.
[19] A. Otto, “Theory of first layer and single molecule surface enhanced Raman scattering (SERS)”, Physica Status Solidi, Vol. 188(4), 1455-1470, 2001.
[20] R. Nabiev, K. V. Sokolov, M. Manfait, “Biomolecular spectroscopy, surface-enhanced Raman spectroscopy and its biomedical applications”, Chichester-Wiley, 267-338, 1993.
[21] S. M. Wells, S. D. Retterer, J. M. Oran, M. J. Sepaniak, “Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy”, ACS Nano, Vol. 3(12), 3845-3853, 2009.
[22] Y. Y. Lin, J. D. Liao, M. L. Yang, C. L. Wu, “Target-size embracing dimension for sensitive detection of viruses with various sizes and influenza virus strains”, Biosensors and Bioelectronics, Vol. 35(1), 447-451, 2012.
[23] C. W. Chang, J. D. Liao, Y. Y. Lin, C. C. Weng, “Detecting very small quantity of molecular probes in solution using nano-mechanically made Au-cavities array with SERS-active effect”, Sensors and Actuators B:Chemical, Vol.153(1), 271-276, 2011.
[24] Y. Yang, Z. Y. Li, K. Yamaguchi, M. Tanemura, Z. R. Huang, D. L. Jiang, Y. H. Chen, F. Zhou, M. Nogami, “Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics”, Nanoscale, Vol.4(8), 2663-2669, 2012.
[25] M. L. Seol, S. J. Choi, D. J. Baek, T. J. Park, J. H. Ahn, S. Y. Lee, Y. K. Choi, Nanotechnology, Vol.23(9), 7, 2012.
[26] H. W. Cheng, S. Y. Huan, H. L. Wu, G. L. Shen, R. Q. Yu, “Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates”, Analytical Chemical, Vol. 81(24), 9902-9912, 2009.
[27] J. D. Driskell, S. Shanmukh, Y. Liu, S.B. Chaney, X. J. Tang, Y. P. Zhao, R. A. Dluhy, “The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced raman scattering substrates”, Journal of Physical Chemistry C, Vol. 112(4), 895-901, 2008.
[28] S. Shanmukh, L. Jones, J. Driskell, Y. P. Zhao, R. Dluhy, R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate”, Nano Letter, Vol. 6,(11), 2630-2636, 2006.
[29] J. Fu, Z. Cao, L. Yobas, “Localized oblique-angle deposition: Ag nanorods on microstructured surfaces and their SERS characteristics”, Nanotechnology, Vol. 22, 505302 , 2011.
[30] J. L. Abell, J. D. Driskell, R. A. Dluhy, R. A. Tripp, Y. P. Zhao, “Fabrication and characterization of a multiwell array SERS chip with biological applications”, Biosensors and Bioelectronics, Vol. 24(12), 3663-3670, 2009.
[31] Z. Q. Tian, B. Ren, “Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy”, Annual Review Physical Chemistry, Vol.55, 197-229, 2004.
[32] Q. X. Zhang, Y. X. Chen, Z. Guo, H. L. Liu, D. P. Wang, X. J. Huang, “Bioinspired multifunctional hetero-hierarchical micro/nanostructure tetragonal array with self-cleaning, anticorrosion, and concentrators for the SERS detection”, ACS Applied Materials & Interfaces, Vol. 5(21), 10633-10642, 2013.
[33] A. Gutes, C. Carraro, R. Maboudian, “Silver nanodesert rose as a substrate for surface-enhanced Raman spectroscopy”, ACS Applied Materials & Interfaces, Vol. 1(11), 2551-2555, 2009.
[34] J. J. Fu, W. C. Ye, C. M. Wang, “Facile synthesis of Ag dendrites on Al foil via galvanic replacement reaction with [Ag(NH3)2]Cl for ultrasensitive SERS detecting of biomolecules”, Material Chemistry Physics, Vol. 141(1), 107-113, 2013.
[35] A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, L. Dal Negro, “Plasmonic nanogalaxies: Multiscale aperiodic arrays for surface-enhanced Raman sensing”, Nano Letter, Vol. 9(11), 3922-3929, 2009.
[36] L. L. Yang, B. Yan, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: The role of the building block in multiscale SERS substrates”, Advance Functional Materials, Vol. 20(16), 2619-2628, 2010.
[37] J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, “Evolution of nanoporosity in dealloying”, Nature, Vol. 410, 450-453, 2001.
[38] Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, R. A. Dluhy, “Retrospect and prospect of observation and study on seismic underground fluid in china”, Applied Physics Letter, Vol. 89(17), 3, 2006.
[39] T. Qiu, W. J. Zhang, P. K. Chu, “Aligned silver nanorod arrays for surface-enhanced Raman spectroscopy”, Physica B, Vol. 404, 1523-1526, 2009.
[40] Y. S. Huh, D. Erickson, “Aptamer based surface enhanced Raman scattering detection of vasopressin using multilayer nanotube arrays”, Biosensors and Bioelectronics, Vol. 25 (5), 1240-1243, 2010.
[41] S. Habouti, M. Matefi-Tempfli, C. H. Solterbeck, M. Es-Souni, S. Matefi-Tempfli, M. Es-Souni, “On-substrate, self-standing Au-nanorod arrays showing morphology controlled properties”, Nano Today, Vol. 6(1), 12-19, 2011.
[42] K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering”, Journal of the American Chemical Society, Vol. 125(2), 588-593, 2003.
[43] R. P. Vanduyne, J. C. Hulteen, D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass”, Journal of Chemical Physics, Vol. 99(3), 2101-2115, 1993.
[44] X. Y. Zhang, M. A. Young, O. Lyandres, R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy”, Journal of the American Chemical Society, Vol. 127(12), 4484-4489, 2005.
[45] G. S. Hong, C. Li, L. M. Qi, “Facile fabrication of two-dimensionally ordered macroporous silver thin films and their application in molecular sensing”, Advance Functional Mateial,Vol. 20(21), 3774-3783, 2010.
[46] H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing”, Advance Materials, Vol. 25(19), 2678-2685, 2013.
[47] J. M. McMahon, S. Z. Li, L. K. Ausman, G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced Raman spectroscopy”, Journal of Physical Chemistry C, Vol.116(2), 1627-1637, 2012.
[48] M. A. Khan, T. P. Hogan, B. Shanker, “Gold-coated zinc oxide nanowire-based substrate for surface-enhanced Raman spectroscopy”, Journal of Raman Spectroscopy, Vol. 40(11), 1539-1545, 2009.
[49] X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, Y. F. Lu, “Effect of chitosan silica hybrid system on dyeing properties of wool”, Nanotechnology, Vol. 23(20), 9, 2012.
[50] D. Y. Wu, J. F. Li, B. Ren, Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures”, Chemical Society Review, Vol. 37(5), 1025-1041, 2008.
[51] S. J. Barcelo, A. Kim, W. Wu, Z. Y. Li, “Fabrication of deterministic nanostructure assemblies with sub-nanometer spacing using a nanoimprinting transfer technique”, ACS Nano, Vol. 6(7), 6446-6452, 2012.
[52] C. W. Chang, J. D. Liao, A. L. Shiau, C. K. Yao, “Non-labeled virus detection using inverted triangular Au nano-cavities arrayed as SERS-active substrate”, Sensors and Actuators B: Chemical, Vol. 156(1), 471-478, 2011.
[53] F. Feng, G. Zhi, H. S. Jia, L. Cheng, Y. T. Tian, X. J. Li, “SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array”, Nanotechnology, Vol. 20, 295501, 2009.
[54] J. Chen, G. W. Qin, J. S. Wang, J. Y. Yu, B. Shen, S. Li, Y. P. Ren, L. Zuo, W. Shen, B. Das, “One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms”, Biosensors and Bioelectronics, Vol. 44, 191-197, 2013.
[55] L. Y. Bi, Y. Y. Rao, Q. Tao, J. Dong, T. Su, F. J. Liu, W. P. Qian, “Fabrication of large-scale gold nanoplate films as highly active SERS substrates for label-free DNA detection”, Biosensors and Bioelectronics, Vol. 43, 193-199, 2013.
[56] M. Das, A. Chirumamilla, A. Toma, R.P. Gopalakrishnan, A. Zaccaria, M. Alabastri, E. Leoncini, F. Di, “Portable, quantitative detection of bacillus bacterial spores using surface-enhanced Raman scattering”, Scientific Report, Vol. 3, 1792, 2013.
[57] G. Das, F. Mecarini, F. Gentile, F. De Angelis, H. G. M. Kumar, P. Candeloro, C. Liberale, G. Cuda, E. Di Fabrizio, “Nano-patterned SERS substrate: application for protein analysis vs. temperature”, Biosensors and Bioelectronics, Vol. 24(6), 1693-1699, 2009.
[58] J. Hu, C.-y Zhang, “Sensitive detection of nucleic acids with rolling circle amplification and surface-enhanced Raman scattering spectroscopy”, Analytical Chemistry, Vol. 82(21), 8991-8997, 2010.
[59] M. Hu, F. S. Ou, W. Wu, I. Naumov, X. Li, A. M. Bratkovsky, R. S. Williams, Z. Li, “Gold nanofingers for molecule trapping and detection”, Journal of the American Chemical Society, Vol. 132 (37), 12820-12822, 2010.
[60] W. R. Premasiri, J. C. Lee, L. D. Ziegler, “Surface-enhanced raman scattering of whole human blood, blood plasma, and red blood cells: Cellular processes and bioanalytical sensing”, Journal of Physical Chemistry B, Vol. 116(31), 9376-9386, 2012.
[61] L. Zhang, X. Y. Lang, A. Hirata, M. W. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement”, ACS Nano, Vol. 5(6), 4407-4413, 2011.
[62] J. Yang, M. Palla, F. G. Bosco, T. Rindzevicius, T. S. Alstrom, M. S. Schmidt, A. Boisen, J. Y. Ju, Q. Lin, “Surface-enhanced Raman spectroscopy based quantitative bioassay on aptamer-functionalized nanopillars using large-area Raman mapping”, ACS Nano, Vol. 7(6), 5350-5359, 2013.
[63] X. X. Jiang, Z. Y. Jiang, T. T. Xu, S. Su, Y. L. Zhong, F. Peng, Y. Y. Su, Y. He, “Surface-enhanced Raman scattering-based sensing in vitro: Facile and label-free detection of apoptotic cells at the single-cell level”, Analytical Chemistry, Vol. 85(5), 2809-2816, 2013.
[64] M. Li, S. K. Cushing, J. M. Zhang, S. Suri, R. Evans, W. P. Petros, L. F. Gibson, D. L. Ma, Y. X. Liu, N. Q. Wu, “Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma”, ACS Nano, Vol. 7(6), 4967-4976, 2013.
[65] K. V. Kong, Z. Y. Lam, W. K. O. Lau, W. K. Leong, M. Oivo, “A transition metal carbonyl probe for use in a highly specific and sensitive sers-based assay for glucose”, Journal of the American Chemical Society, Vol. 135(48), 18028-18031, 2013.
[66] L.C. Feldman, J.W. Mayer, “Fundamentals of surface and thin film analysis”, North-Holland, New York, 1986.
[67] J. D. McGervey, “Introduction to modern physics”, Academic Press New York, 1971.
[68] F. K. Richtmyer, E. H. Kennard, J. N. Cooper, “Introduction to modern physics”, 6th ed. McGraw-Hill, New York, 1969.
[69] R. L. Sproull, W. A. Phillips, “Modern physics”, 3rd ed. John Wiley and Sons, New York, 1980.
[70] E.W. Mueller, T.T. Tsong, “Field ion microscopy principles and applications”, American Elsevier, New York, 1969.
[71] A. Benninghoven, F.G. Rüdenauer, H.W. Werner, “Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications and trends”, John Wiley, New York, 1987.
[72] P.D. Prewitt, G.L.R. Mair, “Focused ion beams from liquid metal ion sources”, John Wiley, New York, p. 291, 1987.
[73] J. I. Goldstein, Dale E. Newbury, P. Echlin, D. C. Joy, C. Fiori, and E. Lifshin, “Scanning microscopy and x-ray microanalysis”, Plenum Press, New York, 1981.
[74] D. Newbury, D. C. Joy, P. Echlin, C. E. Fiori, J. I. Goldstein, “Advanced scanning electron microscopy and x-ray microanalysis”, Plenum Press, New York, 1986.
[75] L. Reimer, “Scanning electron microscopy”, Springer-Verlag, Berlin, 1985.
[76] L. Reimer., “Transmission electron microscopy: physics of image formation and microanalysis”, Springer-Verlag, Berlin, 1984.
[77] D. Rugar, P. Hansma, Physics today, October 23, 1990.
[78] J. S. Foster, J. E. Frommer, “Imaging of liquid crystals using a tunnelling microscope”, Nature, Vol. 333, 542, 1988.
[79] L. Zlatkevich, “Luminescence techniques in solid-state polymer research”, New York, 1989
[80] D. A. Long, “Raman spectroscopy”, McGraw-Hill, New York, 1977
[81] R. K. Chang, T. E. Furtak, “Suface enhanced roman scamring”, Plenum, New York, 1982.
[82] K.L. Wustholz, C.L. Brosseau, F. Casadio, R. P. V. Duyne, “Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists’ canvas”, Physical Chemistry Chemical Physics, Vol.11, 7350-7359, 2009.
[83] C. F. Basler, P. V. Aguilar, “Progress in identifying virulence determinants of the 1918 H1N1 and the Southeast Asian H5N1 influenza A viruses”, Antiviral Research, Vol.79 , 166-178, 2008.
[84] G. J. D. Smith, D. Vijaykrishna, J. Bahl, S. J. Lycett, M. Worobey, O. G. Pybus, S. K. Ma, C. L. Cheung, J. Raghwani, S. Bhatt, J. S. M. Peiris, Y. Guan and A. Rambaut, “Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic”, Nature, Vol. 459, 1122-1125, 2009.
[85] K. Watcharatanyatip, S. Boonmoh, K. Chaichoun, T. Songserm, M. Woratanti and T. Dharakul, “Multispecies detection of antibodies to influenza A viruses by a double-antigen sandwich ELISA”, Journal of Virological Methods, Vol.163, 238-243, 2010.
[86] J. Uhlendorff, T. Matrosovich, H. D. Klenk and M. Matrosovich, “Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses”, Archives of Virology, Vol. 154, 945-957, 2009.
[87] J.C. Moore, J.W. DeVries, M. Lipp, J.C. Griffiths, D.R. Abernethy, “Total protein methods and their potential utility to reduce the risk of food protein adulteration”, Comprehensive Reviews in Food Science and Food Safety, Vol. 9, 330-357, 2010.
[88] H. Chi, B. Liu, G. Guan, Z. Zhang, M.Y. Han, “Reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles”, Analyst, Vol. 135, 1070-1075, 2010.
[89] K. Ai, Y. Liu, L. Lu, “Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula”, Journal of the American Chemical Society, Vol. 131, 9496-9497, 2009.
[90] M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, R.G. Nuzzo, “Nanostructured plasmonic sensors”, Chemical Reviews, Vol. 108, 494-521, 2008.
[91] T. Kang, I. Yoon, K-S. Jeon, W. Choi, Y. Lee, K. Seo, Y. Yoo, Q-H. Park, H. Ihee, Y. D. Suh, B. Kim, “Creating well-defined hot spots for surface-enhanced Raman scattering by single-crystalline noble metal nanowire pairs”, Journal of Physics Chemistry C, Vol. 113, 7492-7496, 2009.
[92] Y. Fang, N-H. Seong, D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering”, Science, Vol. 321, 388-392, 2008.
[93] J. P. Camden, J. A. Dieringer,Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, R. P. Van Duyne, “Probing the structure of single-molecule surface-enhanced Raman scattering hot spots”, Journal of the American Chemical Society, Vol. 130, 12616-12617, 2008.
[94] J. A. Dieringer, R. B. Lettan II, K. A. Scheidt, R. P. Van Duyne, “ A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy”, Journal of the American Chemical Society, Vol. 129, 16249-16256, 2007.
[95] S. E. J. Bell, N. M. S Sirimuthu, “Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides”, Journal of the American Chemical Society, Vol. 128, 15580-15581, 2006.
[96] Y. C. Cao, R. Jin, C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection”, Science, Vol. 297, 1536-1540, 2002.
[97] A. Barhoumi, D. Zhang, F. Tam, N. J. Halas, “Surface-enhanced Raman spectroscopy of DNA”, Journal of the American Chemical Society, Vol.130, 5523-5529, 2008.
[98] Z.Q. Tian, B. Ren, Y. Wu, “Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures”, Journal of Physics Chemistry B, Vol. 106, 9463-9483, 2002.
[99] B. Ren, X.F. Lin, Z.L. Yang, G.K. Liu, R.F. Aroca, B.W. Mao, “Surface-enhanced Raman scattering in the ultraviolet spectral region: uv-sers on rhodium and ruthenium electrodes”, Journal of the American Chemical Society , Vol. 125, 9598-9599, 2003.
[100] A.V. Whitney, B.D. Myers, R.P. Vanduyne, “Sub-100 nm triangular nanopores fabricated with the reactive ion etching variant of nanosphere lithography and angle- resolved nanosphere lithography”, Nano Letters, Vol. 4, 1507-1511, 2004.
[101] C.L. Haynes, R.P. Vanduyne, “Dichroic optical properties of extended nanostructures fabricated using angle-resolved nanosphere lithography”, Nano Letters, Vol. 3, 939-943, 2003.
[102] Z.Q. Tian, B. Ren, J.F. Li, Z.L. Yang, “Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy”, Chemical Communications, Vol. 34, 3514-3534, 2007.
[103] F. Le, D.W. Brandl, Y.A. Urzhumov, H. Wang, J. Kundu, N.J. Halas, J. Aizpurua and Peter Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption”, ACS Nano, Vol. 2(4), 707-718, 2008.
[104] E. C. Le Ru, J. EtchegoinGrand, N. Felidj, J. Aubard, G. Levi, A. Hohenau and J. R. Krenn, “Surface enhanced Raman spectroscopy on nanolithography-prepared substrates”, Current Applied Physics , Vol. 8, 467-470, 2008.
[105] G. Das, F. Mecarini, F. Gentile, F. De Angelis, M. H. G. Kumar, P. Candeloro, C. Liberale, G. Cuda and E. Di Fabrizio, “Nano-patterned SERS substrate: application for protein analysis vs. temperature”, Biosensor and Bioelectronics, Vol. 24, 1693-1699, 2009.
[106] C. W. Chang, J. D. Liao, Y. Y. Lin, C. C. Weng ,“Fabrication of nano-indented cavities on Au for the detection of chemically-adsorbed DTNB molecular probes through SERS effect”, Journal of Colloid and Interface Science, Vol. 358, 384-391, 2011.
[107] P.D. Bao, T. Q. Huang, X. M. Liu, T. Q. Wu, “Surface-enhanced Raman spectroscopy of insect nuclear polyhedrosis virus”, Journal Raman Spectroscopy, Vol.32 (4), 227-230, 2001.
[108] Z. Xie, J. Tao, Y. Lu, K. Lin, J. Yan, P. Wang, H. Ming, “Polymer optical fiber SERS sensor with gold nanorods”, Optical Communications, Vol. 282 (3), 439-442, 2009.
[109] J. Grand, M. Lamy de la Chapelle, J. L. Bijeon, P.M. Adam, A. Vial, P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays”, Physical Review B, Vol. 72(3), 033404-033407, 2005.
[110] Y.F. Hunag, Y.W.Lin, H.T. Chang,“Control of the surface charges of Au−Ag nanorods: selective detection of iron in the presence of poly(sodium 4-styrenesulfonate)”, Langmuir, Vol.23, 12777-12781, 2007.
[111] P. R. Evans, W. R. Hendren, R. Atkinson,R. J. Pollard,“Optical transmission measurements of silver, silver-gold alloy and silver-gold segmented nanorods in thin film alumina”, Nanotechnology, Vol. 19, 465708-465716, 2008.
[112] S. A. Maier,“Plasmonics: fundamentals and applications”, Springer, 2007.
[113] S. C. Luo, K. Sivashanmugan, J. D. Liao, C. K. Yao, H. C. Peng, “Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review”, Biosensors and Bioelectronics, Vol. 61, 232-240, 2014.
[114] F. Le, D. W. Brandl , Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption”, ACS Nano, Vol.2, 707-718, 2008.
[115] L. Tong, T. Pakizeh, L. Feuzl, A. Dmitriev, “Highly directional bottom-up 3D nanoantenna for visible light”, Scientific Reports, Vol. 3, 2311-2315, 2013.
[116] Zoric, M. Zach, B. Kasemo, C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms”, ACS Nano, Vol. 4, 2535-2546, 2011.
[117] F. D. Angelis, M. Malerba, M. Patrini, E. Miele, G. Das, A. Toma, R. P. Zaccaria, “3D hollow nanostructures as building blocks for multifunctional plasmonics”, Nano Letter, Vol. 13, 3553-3558, 2013.
[118] S. Jayawardhana, L. Rosa, S. Juodkazis, P. R. Stoddart, “Additional enhancement of electric field in surface-enhanced raman scattering due to fresnel mechanism”, Scientific Reports, Vol.3, 2335-2340, 2013.
[119] S. Sun, P. Mendes, K. Critchley, S. Diegoli, M. Hanwell, S. D. Evans, G. J. Leggett, J. A. Preece, T. M. Richardson, “Fabrication of gold micro- and nanostructures by photolithographic exposure of thiol-stabilized gold nanoparticles”, Nano Letter, Vol.6, 345-350, 2006.
[120] Q. Yu, P. Guan, D. Qin, G. Golden, P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays”, Nano Letter, Vol. 8 , 1923-1928, 2008.
[121] E. J. R. Vesseur, A. Polman, “Plasmonic whispering gallery cavities as optical nanoantennas”, Nano Letter, Vol. 11, 5524-5530, 2011.
[122] A. C. Fischer, L. M. Belova, Y. G. M. Rikers, B. G. Malm, H. H. Radamson, M. Kolahdouz, K. B. Gylfason, G. Stemme, F, Niklaus, “3D free-form patterning of silicon by ion implantation, silicon deposition, and selective silicon etching”, Advanced Functional Materials, Vol. 22, 4004-4008, 2012.
[123] K. Sivashanmugan, J.D. Liao, J.W. You, C.L. Wu, “Focused-ion-beam-fabricated Au/Ag multilayered nanorod array as SERS-active substrate for virus strain detection”, Sensor and Actuator B:Chemical, Vol. 181, 361-367, 2013.
[124] (a) J. F. Einsle, J. S. Bouillard, W. Dickson, A. V. Zayats, “Hybrid fib milling strategy for the fabrication of plasmonic nanostructures on semiconductor substrates”, Nano Research Letter, Vol. 6, 572-576, 2011. (b) J. S. Bouillard, J. Einsle, W. Dickson, S. G. Rodrigo, S. Carretero-Palacios, L. Martin-Moreno, F. J. Garcia-Vidal, A. V. Zayats, “Optical transmission of periodic annular apertures in metal film on high-refractive index substrate: The role of the nanopillar shape”, Applied Physics Letter, Vol.96, 201101-201103, 2010.
[125] (a) H. H. Tao, C. Ren, S. Feng, Y. Z. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, A. Z. Jin, “Optical improvement of photonic devices fabricated by Ga+ focused ion beam micromachining”, Journal of Vacuum Science and Technology b, Vol. 25, 1609-1614, 2007. (b) J. Tian, W. Yan, Y. Liu, J. Luo, D. Zhang, Z. Li, M. Qiu, “Optical quality improvement of Si photonic devices fabricated by focused-ion-beam milling”, IEEE Journal of Light Technology, Vol. 27, 4306-4310, 2009.
[126] J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D. W. Kim, J. W. Wu , “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling”, Nanotechnology, Vol. 24, 015306-015311, 2013.
[127] K. Ohya, J. Kawata, “Monte carlo study of incident-angle dependence of ion-induced kinetic electron emission from solids”, Nuclear Instruments and Methods B, Vol. 90, 552-555, 1994.
[128] V. Castaldo, J. Withagen, C. Hagen, P. Kruit, E. V. Veldhoven, “Angular dependence of the ion-induced secondary electron emission for He+ and Ga+ beams”, Microscopy and Microanalysis, Vol. 4, 624-636, 2011.
[129] M. Murdoch, G. I. N. Waterhouse, M. A. Nadeem, J. B. Metson, M. A. Keane, R. F. Howe, J. Llorca, H. Idriss, “The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles”, Nature Chemistry, Vol. 3, 489-492, 2011.
[130] G. Han, D. Weber, F. Neubrech, I. Yamada, M. Mitome, Y. Bando, A. Pucci, T. Nagao, “Infrared spectroscopic and electron microscopic characterization of gold nanogap structure fabricated by focused ion beam”, Nanotechnology, Vol. 22, 275202-275208, 2011.
[131] S. Habouti, M. M. Tempfli, C. H. Solterbeck, M. Es-Souni, S. M. Tempfli, M. Es-Souni, “Self-standing corrugated Ag and Au-nanorods for plasmonic applications”, Journal of Material Chemistry, Vol. 21, 6269-6273, 2011.
[132] M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods”, Nano Letter, Vol. 8, 3200-3204, 2008.
[133] (a) G. Jezequel, J. C. Lemonnier, J. Thomas, “Optical properties of gallium films between 2 and 15 eV”, Journal of Physics F: Metal Physics, Vol. 7,1 613-1622, 1977. (b) R. Kofman, P. Cheyssac, J. Richard, “Optical properties of Ga monocrystal in the 0.3-5-eV range”, Physical Review B, Vol. 16, 5216-5225, 1977. (c) J. G. Nelson, J. R. Lince, W. J. Gignac, R. S. Williams, “Characterization of the surface net and electronic structure of AuGa2(001)”, Journal of Vacuum Science and Technology A, Vol. 2, 534-537, 1984.
[134] W. Leng, P. J. Vikesland, “Nanoclustered gold honeycombs for surface-enhanced Raman scattering”, Analytical Chemistry, Vol. 85, 1342-1349, 2013. (b) A. Matschulat, D. Drescher, J. Kneipp, “Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems”, ACS Nano, Vol. 4, 3259-3269, 2010. (c) J. Kneipp, H. Kneipp, A. Rajadurai, R. W. Redmonda, K. Kneippa, “Optical probing and imaging of live cells using SERS labels”, Journal of Raman Spectroscopy, Vol. 40, 1-5, 2009.
[135] Y. S. Yamamoto, K. Hasegawa, Y. Hasegawa, N. Takahashi, Y. Kitahama, S. Fukuoka, N. Murase, Y. Baba, Y. Ozakid, T. Itoh, “Direct conversion of silver complexes to nanoscale hexagonal columns on a copper alloy for plasmonic applications”, Physical Chemistry Chemical Physics, Vol. 15, 14611, 2013.
[136] K. Yoshida, T. Itoh, H. Tamaru, V. Biju, M. Ishikawa, Y. Ozaki, “Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures”, Physical Review B, Vol. 81, 115406, 2010.
[137] W. Li, Y. Chen, J. Zhang, L. Wang, R. C. Ewing, “Controlling the structure and size of Au nanocrystals by annealing and ion sputtering”, Langmuir, Vol. 28, 51, 2012.
[138] M. M. Yazdanpanah, S. A. Harfenist, R. W. Cohna, “Gallium-driven assembly of gold nanowire networks”, Applied Physics Letter, Vol. 85, 1592, 2004.
[139] M. G. Blaber, M. D. Arnold, M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics”, Journal of Physics: Condensed Matter, Vol. 22, 143201, 2010.
[140] M. A. Miller and G. N. Merrill, “The role of low-frequency plasmons in molecular adsorption: a theoretical and spectroscopic study of gold and titanium compounds”, Journal of Physical Chemistry C, Vol. 112, 6939, 2008.
[141] S. Dhara, A. Datta, C. T. Wu, K. H. Chen, Y. L. Wang, “Mechanism of nanoblister formation in Ga+ self-ion implanted GaN nanowires”, Applied Physical Letter, Vol. 86, 203119, 2005.
[142] K. Sivashanmugan, J.D. Liao, B.H. Liu, C.K. Yao, “Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution”, Analytica Chimica Acta, Vol. 800, 56-64, 2013.
[143] W. C. Mallakd, A. B. Gardnek, R. F. Bass, L. M. Slifkin, “Self-diffusion in silver-gold solid solutions”, Physical Review, Vol. 129, 617, 1963.
[144] G. Glodan, C. Cserhati, I. Beszeda, D. L. Beke, “Production of hollow hemisphere shells by pure kirkendall porosity formation in Au/Ag system”, Applied Physics Letter, Vol. 97, 113109, 2010.
[145] I. J. L. Plante, T. Mokari, “Harnessing thermal expansion mismatch to form hollow nanoparticles”, Small, Vol. 9, 56, 2013.
[146] F. Lordan, S. Damm, E. Kennedy, C. Mallon, R. J. Forster, T. E. Keyes, J. H. Rice, “The effect of ag nanoparticles on surface-enhanced luminescence from au nanovoid arrays”, Plasmonics, Vol. 8, 1567, 2013.
[147] D. O. Sigle, E. Perkins, J. J. Baumberg, S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids”, Journal of Physical Chemistry Letter, Vol. 4, 1449, 2013.
[148] Y. Fang, N-H. Seong, D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering”, Science, Vol. 321, 388-392, 2008.
[149] K. Sivashanmugan, J.D. Liao, C. K. Yao, “Nanovoids embedded in fib-fabricated Au/ag nanorod arrays for ultrasensitive SERS-active substrate”, Applied Physics Express, Vol. 7, 092202, 2014.
[150] K. Sivashanmugan, J.D. Liao, C. K. Yao, “Elimination of gallium concentration on focused-ion-beam-fabricated Au/Ag nanorod surface to recover its Raman scattering characteristic”, Sensors and Actuators: B, Vol. 206, 415-422, 2015.
[151] R. Botta, G. Upender, R. Sathyavathi, D. Narayana Rao, C. Bansal, “Silver nanoclusters films for single molecule detection using surface enhanced Raman scattering (SERS)”, Materials Chemistry Physics, Vol. 137, 699, 2013.
[152] T. Kondo, T. Fukushima, K. Nishio, H. Masuda, “Surface-enhanced Raman scattering in hierarchical structures of Au formed using templates by site-controlled tunnel etching of Al”, Applied Physics Express, Vol. 2, 125001, 2009.
[153] T. Kondo, K. Nishio, H. Masuda, “High-throughput fabrication of substrates for surface-enhanced Raman scattering measurement based on nanoimprinting process using anodic porous alumina”, Applied Physics Express, Vol. 6, 102401, 2013.
[154] W. Xie, C. Herrmann, K. Kompe, M. Haase, S. Schlucker, “Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions”, Journal of the American Chemical Society, Vol. 133, 19302-19305, 2011.
[155] V. Joseph, A. Matschulat, J. Polte, S. Rolf, F. Emmerling, J. Kneipp, “SERS enhancement of gold nanospheres of defined size”, Journal of Raman Spectroscopy, Vol. 42, 1736-1742, 2011.
[156] S. E. J. Bell, N. M. S. Sirimuthu, “Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides”, Journal of the American Chemical Society, Vol. 128, 15580-15581, 2006.
[157] Y. C. Cao, R. Jin, C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection”, Science, Vol. 297, 1536-1540, 2002.
[158] E. Nalbant, E. Senturk, A. R. H. Walker, “Surface-enhanced Raman scattering spectroscopy via gold nanostars”, Journal of Raman Spectroscopy, Vol. 40, 86-91, 2009.
[159] L.M. Chen, Y.N. Liu, “Surface-enhanced Raman detection of melamine on silver-nanoparticle-decorated silver/carbon nanospheres: effect of metal ions”, ACS Applied Materials & Interfaces, Vol. 3, 3091-3096, 2011.
[160] L.M. Chen, Y.N. Liu, “Ag-nanoparticle-modified single Ag nanowire for detection of melamine by surface-enhanced Raman spectroscopy”, Journal of Raman Spectroscopy, Vol. 43, 986-991, 2012.
[161] E.C.L. Ru, J. Etchegoin Grand, N. Felidj, J. Aubard, G. Levi, A. Hohenau, J. R. Krenn, “Surface enhanced Raman spectroscopy on nanolithography-prepared substrates”, Current Applied Physics, Vol. 8, 467-470, 2008.
[162] G. Das, F. Mecarini, F. Gentile, F.D. Angelis, M. H. G. Kumar, P. Candeloro, C. Liberale, G. Cuda, E.D. Fabrizio, “Nano-patterned SERS substrate: Application for protein analysis vs. temperature”, Biosensors and Bioelectronics, Vol. 24, 1693-1699, 2009.
[163] C. K.Yao, J.D.Liao, C.W. Chang, J.R. Lin, “Spatially reinforced nano-cavity array as the SERS-active substrate for detecting hepatitis virus core antigen at low concentrations”, Sensors and Actuators B, Vol.174, 478-484, 2012.
[164] Z. Xie, J. Tao, Y. Lu, K. Lin, J. Yan, P. Wang, H. Ming, “Polymer optical fiber SERS sensor with gold nanorods”, Optical Communication, Vol. 282(3), 439-442, 2009.
[165] Y. Cui, B. Ren, R.A. Yao, Z.Q. Gu, J. Tian, “Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy”, Journal of Physical Chemistry B, Vol. 110, 4002-4006, 2006.
[166] G.V.P. Kumar, S. Shruthi, B. Vibha, B.A.A. Reddy, T.K. Kundu, C. Narayana, “Hot spots in Ag core-Au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules”, Journal of Physical Chemistry C, Vol. 111, 4388-4392, 2007.
[167] C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications”, Journal of Physical Chemistry B, Vol. 109, 13857-13870, 2005.
[168] S.J. Oldenburg, S. L. Westcott, R. D. Averitt, N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates”, Journal of Chemical Physics, Vol. 111, 4729-4735, 1999.
[169] K. H. Yang, Y. C. Liu, C. C. Yu, “Enhancements in intensity and stability of surface-enhanced raman scattering on optimally electrochemically roughened silver substrates”, Journal of Material Chemistry, Vol. 18, 4849-4855, 2008.
[170] M.V. Canamares, C. Chenal, R. L. Birke, J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet”, Journal of Physical Chemistry C, Vol. 112, 20295-20300, 2008.
[171] K. A. Willets, R. P.V. Duyne, “Localized surface plasmon resonance spectroscopy and sensing”, Annual Review Physical Chemistry, Vol. 58, 267-297, 2007.
[172] Y. Fang, H. Wei, F. Hao, P. Nordlander, H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons”, Nano Letter, Vol. 9, 2049-2053, 2009.
[173] C. Xu, J. Xie, D. Ho, C.Wang, N. Kohler, E.G. Walsh, J.R. Morgan, Y.E. Chin, S.H. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual functional probes”, Angewandte Chemie International Edition, Vol. 47, 173-176, 2008.
[174] H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls”, Advanced Functional Materials, Vol. 22, 218-224, 2012.
[175] J.S. Choi, Y.W. Jun, S.I. Yeon, H.C. Kim, J.S. Shin, J. Cheon, “Biocompatible heterostructured nanoparticles for multimodal biological detection”, Journal of the American Chemical Society, Vol. 128, 15982-15983, 2006.
[176] E.Z. Tan, P.G. Yin, T.T. You, H. Wang, L. Guo, “Three dimensional design of large-scale TiO2 nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection”, ACS Applied Materials & Interfaces, Vol. 4, 3432-3437, 2012.
[177] Y.K. Mishra, S. Mohapatra, R. Singhal, D.K. Avasthi, D.C. Agarwal, S.B. Ogale, “Au-ZnO: A tunable localized surface plasmonic nanocomposites”, Applied Physics Letter, Vol. 92, 043107-043109, 2008.
[178] Y.F. Chan, H.J. Xu, L. Cao, Y. Tang, D.Y. Li, X.M. Sun, “ZnO/Si arrays decorated by Au nanoparticles for surface-enhanced Raman scattering study”, Journal of Applied Physics, Vol. 111, 033104-09(06), 2012.
[179] (a) G. Shan, S. Zheng, S. Chen, Y. Chen, Y. Liu, “Multifunctional ZnO/Ag nanorod array as highly sensitive substrate for surface enhanced Raman detection”, Colloids and Surfaces B, Vol. 94, 157-162, 2012. (b) H. Hu, Z. Wang, S. Wang, F. Zhang, S. Zhao, S. Zhu, ZnO/Ag heterogeneous structure nanoarrays: Photocatalytic synthesis and used as substrate for surface-enhanced Raman scattering detection, Journal of Alloys and Compounds, Vol. 509, 2016-2020, 2011.
[180] A. Musumeci, D. Gosztola, T. Schiller, N.M. Dimitrijevic, V. Mujica, D. Martin, T. Rajh, “SERS of semiconducting nanoparticles (TiO2 hybrid composites)”, Journal of the American Chemical Society, Vol. 131, 6040-6041, 2009.
[181] X. Li, H. Hu, D. Li, Z.Shen, Q. Xiong, S. Li, H.J. Fan, “Ordered array of gold semishells on TiO2 spheres: an ultrasensitive and recyclable SERS substrate”, ACS Applied Materials & Interfaces, Vol. 4, 2180-2185, 2012.
[182] M. Kazes, D.Y. Lewis, U. Banin, “Method for preparation of semiconductor quantum-rod lasers in a cylindrical microcavity”, Advanced Functional Materials, Vol. 14, 957-962, 2004.
[183] J. Elias, M. Gizowska, P. Brodard, R.Widmer, Y. deHazan, T. Graule, J. Michler, L. Philippe, “Electrodeposition of gold thin films with controlled morphologies and their applications in electrocatalysis and SERS”, Nanotechnology, Vol. 23, 255705 (7pp),2012.
[184] (a) R Buividas, N. Fahim, J. Juodkazyte, S. Juodkazis, “Novel method to determine the actual surface area of a laser-nanotextured sensor”, Applied Physics A, Vol. 114(1), 169-175, 2014. (b) Y Nishijima, L. Rosa, S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting”, Optics Express, Vol. 20(10), 11466-11477, 2012.
[185] R. Botta, G. Upender, R. Sathyavathi, D. Narayana Rao, C. Bansal, “Silver nanoclusters films for single molecule detection using Surface Enhanced Raman Scattering (SERS)”, Materials Chemistry and Physics, Vol. 137, 699-703, 2013.
[186] U.S. Dinish, F. C. Yaw, A. Agarwal, M. Olivo, “Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing, Biosensors and Bioelectronics, Vol. 26, 1987-1992, 2011.
[187] D. Natelson, Y. Li, J. B. Herzoga, “Nanogap structures: combining enhanced Raman spectroscopy and electronic transport”, Physical Chemistry Chemical Physics, Vol. 15, 5262-5275, 2013.
[188] J. J. Xu, W. W. Zhao, S. Song, C. Fan, H. Y. Chen, “Functional nanoprobes for ultrasensitive detection of biomolecules: an update”, Chemical Society Review, Vol. 43, 1601-1611, 2014.
[189] G. Braun, I. Pavel, A. R. Morrill, D. S. Seferos, G. C. Bazan, N. O. Reich, M. Moskovits, “Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots”, Journal of the American Chemical Society, Vol. 129, 7760-7761, 2007.
[190] S. Deng, H. M. Fan, X. Zhang, K. P. Loh, C. L. Cheng, C. H. Sow, Y. L. Foo, “An effective surface-enhanced Raman scattering template based on a Ag nanoclusters-ZnO nanowire array”, Nanotechnology, Vol. 20, 175705-175711, 2009.
[191] S. Cheng, B.Yan, S. M. Wong, X. Li, W. W Zhou, T. Yu, Z. Shen, H.Yu, H. J. Fan, “Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays”, ACS Applied Materials & Interfaces, Vol. 2, 1824-1828, 2010.
[192] G Sinha, L. E. Depero, I. Alessandri, “Recyclable SERS substrates based on Au-coated Zno nanorods”, ACS Applied Materials & Interfaces, Vol. 3, 2557-2563, 2011.
[193] M. Liu, L. Sun, C. Cheng, H. Hu, Z. Shen, H. J. Fan, “Highly effective SERS substrates based on an atomic-layer-depositiontailored nanorod array scaffold”, Nanoscale, Vol. 3, 3627-3630, 2011.
[194] R. Li, C. Han, Q. W. Chen, “A facile synthesis of multifunctional ZnO/Ag sea urchinlike hybrids as highly sensitive substrates for surface enhanced Raman detection”, RSC Advance, Vol. 3, 11715-11722, 2013.
[195] Y. Zang, J. Yin, X. He, C. Yue, Z. Wu, J. Li, J. Kang, “Plasmonic-enhanced self-cleaning activity on asymmetric Ag/ZnO surface-enhanced Raman scattering substrates under UV and visible light irradiation”, Journal of Materials Chemistry A, Vol. 2, 7747-7753, 2014.
[196] Y. Amano and Q. Cheng, “Detection of influenza virus: traditional approaches and development of biosensors”, Analytical and Bioanalytical Chemistry, Vol. 381, 156-164, 2005.
[197] Z. Xie, J. Tao, Y. Lu, K. Lin, J. Yan, P. Wang, H. Ming, “Polymer optical fiber SERS sensor with gold nanorods”, Optical Communications, Vol. 282 (3), 439-442, 2009.
[198] S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate”, Nano Letters, Vol. 6(11), 2630-2636, 2006.
[199] H. Han, X. Yan, R. Dong, G. Ban and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS)”, Applied Physics B, Vol. 94, 667-672, 2009.
[200] D. K. Byarugaba, M. F. Ducatez, B. Erima, E. A. Mworozi, M. Millard, H. Kibuuka, L. Lukwago, J. Bwogi, B. B. Kaira, D. Mimbe, D. C. Schnabel, S. Krauss, D. Darnell, R. J. Webby, R. G. Webster and F. Wabwire-Mangen, “Molecular Epidemiology of Influenza A/H3N2 Viruses Circulating in Uganda”, PLoS One, Vol. 6(11), e27803- e27813, 2011.
[201] Notingher, “Raman spectroscopy cell-based biosensors”, Sensors, Vol.7(8), 1343-1358, 2007.
[202] E. Van der Vries, F. F. Stelma, C. A. B. Boucher, “Emergence of a multidrug-resistant pandemic influenza A (H1N1) virus”, New England Journal of Medicine, Vol. 363(14), 1381-1382, 2010.
[203] W.T. Cheng, M.T. Liu, H. N. Liu, S.Y. Lin, “Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma”, Microscopy Research and Technique, Vol. 68, 75-79, 2005.
[204] M. L. Yang, Y. H. Chen, S.W. Wang, Y. J. Huang, C. H. Leu, N.C. Yeh, C. Y. Chu, C. C. Lin, G. S. Shieh, Y. L. Chen, J. R. Wang, C. H. Wang, C. L. Wu, A. L. Shiau, “ Galectin-1 binds to influenza virus 1 and ameliorates influenza pathogenesis”, Journal of Virology, Vol. 85(19), 10010-10020, 2011.
[205] C.M-E. Gossner, J. Schlundt, P.B. Embarek, S. Hird, D. Lo-Fo-Wong, J.J.O. Betran, K.N. Teoh, A. Tritscher, “The melamine incident: implications for international food and feed safety”, Environmental Health Perspectives, Vol. 117(12), 1803-1808, 2009.
[206] C.A. Brown, K.S. Jeong, R.H. Poppenga, B. Puschner, D.M. Miller, A.E. Ellis, K.I. Kang, S. Sum, A.M. Cistola, S.A. Brown, “Outbreaks of renal failure associated with melamine and cyanuric acid in dogs and cats in 2004 and 2007”, Journal of Veterinary Diagnostic Investigation, Vol. 19, 525-531, 2007.
[207] S. Ehling, S. Tefera, I.P. Ho, “High-performance liquid chromatographic method for the simultaneous detection of the adulteration of cereal flours with melamine and related triazine by products ammeline, ammelide, and cyanuric acid”, Food Additives & Contaminants: Part A, Vol. 24, 1319-1325, 2007.
[208] H. Yu, Y. Tao, D. Chen, Y. Wang, Z. Liu, Y. Pan, L. Huang, D. Peng, M. Dai, Z. Liu, Z. Yuan, “Development of a high performance liquid chromatography method and a liquid chromatography-tandem mass spectrometry method with pressurized liquid extraction for simultaneous quantification and confirmation of cyromazine, melamine and its metabolites in foods of animal origin”, Analytica Chimica Acta, Vol. 682, 48-58, 2010.
[209] X. Zhu, S. Wang, Q. Liu, Q. Xu, S. Xu, H. Chen, “Determination of residues of cyromazine and its metabolite, melamine, in animal-derived food by gas chromatography-mass spectrometry with derivatization”, Journal of Agricultural and Food Chemistry, Vol. 57, 11075-11080, 2009.
[210] W. Li, Y. Chen, J. Zhang, L. Wang, R. C. Ewing, “Controlling the structure and size of au nanocrystals by annealing and ion sputtering”, Langmuir, Vol. 28, 51, 2012.
[211] M. M. Yazdanpanah, S. A. Harfenist, R. W. Cohna, “Gallium-driven assembly of gold nanowire networks”, Applied Physics Letter, Vol. 85, 1592, 2004.
[212] M. G. Blaber, M. D. Arnold, M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics”, Journal of Physics: Condensed Matter, Vol. 22, 143201, 2010.
[213] M. A. Miller and G. N. Merrill, “The Role of low-frequency plasmons in molecular adsorption: a theoretical and spectroscopic study of gold and titanium compounds”, Journal of Physical Chemistry C, Vol. 112, 6939, 2008.
[214] S. Dhara, A. Datta, C. T. Wu, K. H. Chen, Y. L. Wang, “Mechanism of nanoblister formation in Ga+ self-ion implanted GaN nanowires”, Applied Physical Letter, Vol. 86, 203119, 2005.
[215] S. Nicoleta, Mircescu, M. Oltean, V. Chis, N. Leopold, “FTIR, FT-Raman, SERS and DFT study on melamine”, Vibrational Spectroscopy, Vol. 62, 165-171, 2012.
[216] H. Chi, B. Liu, G. Guan, Z. Zhang, M.Y. Han, “Reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles”, Analyst, Vol. 135, 1070-1075, 2010.
[217] J.P. Toth, P.C. Bardalaye, “Capillary gas chromatographic separation and mass spectrometric detection of cyromazine and its metabolite melamine”, Journal of Chromatography, Vol. 408, 335-340, 1987.
[218] J.A. Campbell, D.S. Wunschel, C.E. Petersen, “Analysis of melamine, cyanuric acid, ammelide, and ammeline using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOFMS)”, Analytical Letter, Vol. 40, 3107-3118, 2007.
[219] H.A. Cook, C.W. Klampfl, W. Buchberger, “Analysis of melamine resins by capillary zone electrophoresis with electrospray ionization-mass spectrometric detection”, Electrophoresis, Vol. 26, 1576-1583, 2005.
[220] E.A.E. Garber, “Detection of melamine using commercial enzyme-linked immunosorbent assay technology”, Journal of Food Protection, Vol. 71, 590-594, 2008.
[221] W. Xie, C. Herrmann, K. Kompe, M. Haase, S. Schlucker, “Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions”, Journal of the American Chemical Society, Vol. 133, 19302-19305, 2011.
[222] V. Joseph, A. Matschulat, J. Polte, S. Rolf, F. Emmerling, J. Kneipp, “SERS enhancement of gold nanospheres of defined size”, Journal of Raman Spectroscopy, Vol. 42, 1736-1742, 2011.
[223] E. Nalbant, E. Senturk, A. R. H. Walker, “Surface-enhanced Raman scattering spectroscopy via gold nanostars”, Journal of Raman Spectroscopy, Vol. 40, 86-91, 2009.
[224] L.M. Chen, Y.N. Liu, “Surface-enhanced Raman detection of melamine on silver-nanoparticle-decorated silver/carbon nanospheres: effect of metal ions”, ACS Applied Materials & Interfaces, Vol. 3, 3091-3096, 2011.
[225] L.M. Chen, Y.N. Liu, “Ag-nanoparticle-modified single Ag nanowire for detection of melamine by surface-enhanced Raman spectroscopy”, Journal of Raman Spectroscopy, Vol. 43, 986-991, 2012.
[226] G. Braun, I. Pavel, A. R. Morrill, D. S. Seferos, G. C. Bazan, N. O. Reich, M. Moskovits, “Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots”, Journal of the American Chemical Society, Vol. 129, 7760-7761, 2007.
[227] M. Ji, W. Yang, Q. Ren, D. Lu, “Facile phase transfer of hydrophobic nanoparticles with poly(ethylene glycol) grafted hyperbranched poly(amido amine)”, Nanotechnology, Vol. 20, 075101-075111, 2009.
[228] B. Braun, S. J. Lee, T. Laurence, N. Fera, L. Fabris, G. C. Bazan, M. Moskovits, N. O. Reich, “Generalized approach to SERS-active nanomaterials via controlled nanoparticle linking, polymer encapsulation, and small-molecule infusion”, Journal of Physical Chemistry C, Vol. 113, 13622-13629, 2009.
[229] J. Kundu, O. Neumann, B. G. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. E. Scuseria, N. J. Halas, “Adenine and adenosine monophosphate (AMP)- Gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies”, Journal of Physical Chemistry C, Vol. 113, 14390-14397, 2009.
[230] E. Nicoleta, Mircescu, M. Oltean, V. Chis, N. Leopold, “FTIR, FT-Raman, SERS and DFT study on melamine”, Vibrational Spectroscopy, Vol. 62, 165-171, 2012.
[231] M.K. Marchewka, “Infrared and Raman spectra of bis(melaminium) sulfate dehydrate”, Journal of Chemical Research (s), Vol. 25, 518-521, 2003.
[232] W. Sawodny, K. Niedenzu, J.W. Dawson, “Vibrational spectrum and assignment of normal vibrations of melamine”, Journal of Chemical Physics, Vol. 45, 3155-3156, 1966.
[233] M.M. Scoponi, E. Polo, F. Pradella, V. Bertolasi, V. Carassiti, P. Goberti, “Crystal structure and spectroscopic analysis of melamine hydrobromide. evidence for iso-melamine cations and charge-transfer complexes in the solid state”, Journal of Chemical Society Perkin, Vol. 2, 1127-1132, 1992.
[234] M.K. Marchewka, “Infrared and Raman spectra of melaminium chloride hemihydrates”, Material Science and Engineering, Vol. B95, 214-221, 2002.
[235] (a) H. Hu, Z. Wang, L. Pan, S. Zhao, S. Zhu, “Ag-Coated Fe3O4@SiO2 three-ply composite microspheres: synthesis, characterization, and application in detecting melamine with their surface-enhanced Raman scattering”, Journal of Physical Chemistry C, Vol. 114, 7738-7742, 2010, (b) S V. Kumar, N.M. Huang, H.N. Lim, M. Zainy, I. Harrison, C.H. Chia, “Preparation of highly water dispersible functional graphene/silver nanocomposite for the detection of melamine”, Sensors and Actuators B: Chemical, Vol. 181, 885-893, 2013.
[236] Y. Wang, P.C. Sevinc, Y. He, H.P. Lu, “Probing ground-state single-electron self-exchange across a molecule-metal interface”, Journal of the American Chemical Society, Vol. 133, 6989-6996, 2011.
[237] E. Koglin, B. J. Kip, R. J. Meier, “Adsorption and displacement of melamine at the Ag/electrolyte interface probed by surface-enhanced Raman microprobe spectroscopy”, Journal of Physical Chemistry, Vol. 100, 5078-5089, 1996.
[238] M.G. Albrecht, J.A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode”, Journal of the American Chemical Society, Vol. 99, 5215-5217, 1977.
[239] K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, “Surface-enhanced Raman scattering and biophysics”, Journal of Physics: Condensed Matter, Vol. 14, R597-R624, 2002.
[240] C. Liusman, H. Li, G. Lu, J. Wu, F. Boey, S. Li, H. Zhang, “Surface-enhanced Raman scattering of Ag-Au nanodisk heterodimers”, Journal of Physical Chemistry C, Vol. 116, 10390-10395, 2012.
[241] L.M. Chen, Y.N. Liu, “Surface-enhanced Raman detection of melamine on silver-nanoparticle-decorated silver/carbon nanospheres: effect of metal ions”, ACS Applied Materials & Interfaces, Vol. 3, 3091-3096, 2011.
[242] J.M. Li, W.F. Ma, C. Wei, L. J. You, J. Guo, J. Hu, C.C. Wang, “Detecting trace melamine in solution by SERS using Ag nanoparticle coated poly(styrene-co-acrylic acid) nanospheres as novel active substrates”, Langmuir, Vol.27, 14539-14544, 2011.
[243] L.M. Chen, Y.N. Liu, “Ag-nanoparticle-modified single Ag nanowire for Detection of melamine by surface-enhanced Raman spectroscopy”, Journal of Raman Spectroscopy, Vol. 43, 986-991, 2012.
[244] (a) W. Leng, P. J. Vikesland, “Nanoclustered gold honeycombs for surface-enhanced Raman scattering”, Analytical Chemistry, Vol. 85, (2013) 1342-1349. (b) A. Matschulat, D. Drescher, J. Kneipp, “Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems”, ACS Nano, Vol. 4, 3259-3269, 2010. (c) J. Kneipp, H. Kneipp, A. Rajadurai, R. W. Redmonda, K. Kneippa, “Optical probing and imaging of live cells using SERS labels”, Journal of Raman Spectroscopy, Vol. 40, 1-5, 2009.
[245] Y. Fu, N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment”, Applied Physics B, Vol. 80, 581-585, 2005. (b) B. Chen, K. Lu, “Selective focused-ion-beam sculpting of TiO2 nanotubes and mechanism understanding”, Physical Chemistry Chemical Physics, Vol.15, 1854-1862, 2013.
[246] A. B. Evlyukhin, S. I. Bozhevolnyi, “Surface plasmon polariton guiding by chains of nanoparticles”, Laser Physics Letter, Vol. 3, 396-400, 2006.
[247] F. Zhang, P. Chen, X. Li, J. T. Liu, L. Lin, Z. W. Fan, “Further localization of optical field for flower-like silver particles under laser radiation”, Laser Physics Letter, Vol. 10 045901(6pp), 2013.
[248] F. Lordan, S. Damm, E. Kennedy, C. Mallon, R. J. Forster, T. E. Keyes, J. H. Rice, “The effect of Ag nanoparticles on surface-enhanced luminescence from Au nanovoid arrays”, Plasmonics, Vol. 8, 1567, 2013.
[249] D. O. Sigle, E. Perkins, J. J. Baumberg, S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids”, Journal of Physical Chemistry Letter, Vol. 4, 1449, 2013.
[250] Y. Fang, N-H. Seong, D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering”, Science, Vol. 321, 388-392, 2008.
[251] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS)”,Physical Review Letter, Vol. 78, 1667-1670, 1997.
[252] S. Deng, H. M. Fan, X. Zhang, K. P. Loh, C. L. Cheng, C. H. Sow, Y. L. Foo, “An effective surface-enhanced Raman scattering template based on a Ag nanoclusters-ZnO nanowire array”, Nanotechnology, Vol. 20, 175705-175711, 2009.
[253] S. Cheng, B.Yan, S. M. Wong, X. Li, W. W Zhou, T. Yu, Z. Shen, H.Yu, H. J. Fan, “Fabrication and SERS performance of silver-nanoparticle-decorated Si/Zno nanotrees in ordered arrays”, ACS Applied Materials & Interfaces, Vol. 2, 1824-1828, 2010.
[254] G Sinha, L. E. Depero, I. Alessandri, “Recyclable SERS substrates based on au-coated zno nanorods”, ACS Applied Materials & Interfaces, Vol. 3, 2557-2563, 2011.
[255] M. Liu, L. Sun, C. Cheng, H. Hu, Z. Shen, H. J. Fan, “Highly effective SERS substrates based on an atomic-layer-deposition tailored nanorod array scaffold”, Nanoscale, Vol. 3, 3627-3630, 2011.
[256] R. Li, C. Han, Q. W. Chen, “A facile synthesis of multifunctional ZnO/Ag sea urchinlike hybrids as highly sensitive substrates for surface enhanced Raman detection”, RSC Advance, Vol. 3, 11715 -11722, 2013.
[257] Y. Zang, J. Yin, X. He, C. Yue, Z. Wu, J. Li, J. Kang, “Plasmonic-enhanced self-cleaning activity on asymmetric Ag/ZnO surface-enhanced Raman scattering substrates under UV and visible light irradiation”, Journal of Materials Chemistry A, Vol. 2, 7747-7753, 2014.
[258] H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls”, Advanced Functional Materials, Vol. 22, 218-224, 2012.
[259] H. Hu, Z. Wang, S. Wang, F. Zhang, S. Zhao, S. Zhu, ZnO/Ag heterogeneous structure nanoarrays: photocatalytic synthesis and used as substrate for surface-enhanced Raman scattering detection, Journal of Alloys and Compounds, Vol. 509, 2016-2020, 2011.
[260] L. He, N.J. Kim, H. Li, Z. Hu, M. Lin, “Use of a Fractal-like gold nanostructure in surface-enhanced Raman spectroscopy for detection of delected food contaminants”, Journal of Agricultural and Food Chemistry , Vol. 56, 9843-9847, 2008.
[261] E.Z. Tan, P.G. Yin, T.T. You, H. Wang, L. Guo, “Three dimensional design of large-scale TiO2 nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection”, ACS Applied Materials & Interfaces, Vol. 4, 3432-3437, 2012.
[262] (a) L. Rosa, K. Sun, J. Szymanska, F. E. Hudson, A. Dzurak, A. Linden, S. Bauerdick, L. Peto, S. Juodkazis, “Tailoring spectral position and width of field enhancement by focused ion-beam patterning of plasmonic nanoparticles”, Physica Status Solidi (RRL), Vol. 4(10), 262-264, 2010. (b) Y Nishijima, Y. Hashimoto, L. Rosa , J. B. Khurgin ,S. Juodkazis, “Scaling rules of SERS intensity”, Advanced Optical Materials, Vol. 2(4), 382-388, 2014.
[263] Y. Zang, J. Yin, X. He, C. Yue, Z. Wu, J. Li, J. Kang, “Plasmonic-enhanced self-cleaning activity on asymmetric Ag/ZnO surface-enhanced Raman scattering substrates under UV and visible light irradiation”, Journal of Materials Chemistry A, Vol. 2, 7747-7753, 2014.
[264] L. Wang, L. Wang, E. Tan, L. Li, L. Guo, X. Han, “Flower-shaped PdI2 nanomaterials with remarkable surface-enhanced Raman scattering activity”, Journal of Materials Chemistry, Vol. 21, 2369-2373, 2011.
[265] M. Futamata, Y. Yu, T. Yajima, “Elucidation of electrostatic interaction between cationic dyes and Ag nanoparticles generating enormous SERS enhancement in aqueous solution”, Journal of Physical Chemistry C, Vol. 115, 5271-5279, 2011.
[266] M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, J. B. Edel, “Self-assembled nanoparticle arrays for multiphase trace analyte detection”, Nature Materials, Vol. 12, 165-171, 2013.
[267] W. L. Fu, S. J. Zhen, C. Z. Huang, “One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection”, Analyst, Vol. 138, 3075-3081, 2013.
[268] Y. Jin, P. Ma, F. Liang, D. Gaoc, X. Wang, “Determination of malachite green in environmental water using cloud point extraction coupled with surface-enhanced Raman scattering”, Analytical Methods, Vol. 5, 5609-5614, 2013.
[269] H. Xie, I. A. Larmour, V. Tileli, A. L. Koh, D. W. McComb, K. Faulds, D. Graham, “Deciphering surface enhanced Raman scattering activity of gold nanoworms through optical correlations”, Journal of Physical Chemistry C, Vol. 115, 20515-20522, 2011.
[270] W. Leng, P. J. Vikesland, “Nanoclustered gold honeycombs for surface-enhanced Raman scattering”, Analytical Chemistry, Vol. 85, 1342-1349, 2013.
[271] C.K. Yao, J.D. Liao, C.W. Chang, J.R. Lin, “Spatially reinforced nano-cavity arrayas the SERS-active substrate for detecting hepatitis virus core antigen at low concentrations”, Sensors and Actuator B:Chemical, Vol. 174, 478-484, 2012.
[272] C.K. Yao, J.D. Liao, C. H. Lin, Y. S. Yang, S. H. Yu, J. W. Yang, “Spatially reinforced Au nano-cavities as a reaction nano-reservoirfor trace analysis of DNA hybridization”, Sensors and Actuator B:Chemical, Vol. 191, 219-226, 2014.