| 研究生: |
楊仲霖 Yang, Chung-Lin |
|---|---|
| 論文名稱: |
電子束銲接製程參數對690合金與304L不銹鋼異種銲接之影響 The Influence of Electron Beam Welding Parameters on Dissimilar Welding of Alloy 690 and 304L Stainless Steel |
| 指導教授: |
李驊登
Lee, Hwa-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 腐蝕試驗 、機械性質 、304L不銹鋼 、690合金 、微觀組織 、異種銲接 、電子束銲接 |
| 外文關鍵詞: | Mechanical Proper, Corroison test, 304L Stainless Steel, Alloy 690, Microstructure, Dissimilar Welding, EBW |
| 相關次數: | 點閱:176 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對核電廠反應爐中600合金管路與308不銹鋼平板之異材銲接SCC破損案例,計劃以抗蝕性更佳的690合金取代600合金,而304L不銹鋼取代308不銹鋼,配合高能量密度與低入熱量特性的電子束銲接製程,分別進行的材料自體與異種對接銲,探討不同EBW銲接參數對於銲件微觀組織、機械性質與腐蝕行為所造成的影響。
實驗首先以BOP(bead on plate)方式,了解銲接參數對於3mm板厚的690合金與304L不銹鋼穿透深度之影響,之後將評估所得貫穿參數,進行兩材料對接銲實驗與銲後銲件的分析研究。
BOP實驗結果顯示,材料的EBW穿透深度隨著入熱量的提昇而逐漸增加,當達到臨界貫穿條件時,銲件表面具有較佳完整性,此條件應為材料最佳自體對接銲之銲接參數。但實際對接銲接時,因對接縫的存在,BOP實驗所得參數利用於690合金與304L不銹鋼自體對接銲接時,銲接參數需做小幅修改。
對接銲研究顯示,自體對接銲件微硬度值,因銲接參數入熱量變化不大而與母材相近。相對地,異種對接銲件受到母材稀釋量的不同造成合金成份有所差異,顯著地影響熔融區硬度表現,其中304L不銹鋼稀釋量多時(高Fe低Ni),微硬度相較於母材呈現下降現象;而690合金稀釋量多銲件(高Ni低Fe),硬度與690母材相近。
抗拉強度之結果,690合金自體對接銲件抗拉強度比母材稍低,而304L自體對接銲具優良機械性質,抗拉強度高於母材。異種對接銲之高Ni低Fe含量的銲件,抗拉強度與690合金自體銲件接近。
對接銲件因EBW快速凝固作用,金相觀察顯示次晶組織非常細密,且無明顯偏析物出現,腐蝕試驗顯示抗IGC能力優良。其中690合金自體對接銲件僅次晶間有些微孔蝕出現,而304L自體對接銲件為沃斯田鐵次晶間的δ-肥粒鐵易受到腐蝕液的浸蝕較為明顯。異種對接銲件熔融區抗蝕能力受到合金成份的差異,腐蝕金相變化大,當304L稀釋量較多時,熔融區次晶晶界受到浸蝕而明顯顯現,690合金稀釋量多時,熔融區腐蝕金相出現部分孔蝕,抗蝕能力佳。
Regarding the SCC of alloy 600 tube and 308 SS plate dissimilar weldment at the reactor of nuclear power plant, in this study EBW is used to joint alloy 690 and 304L SS plates to replace the alloy 600 and 308 SS to get their autogenous and dissimilar weldments individually. The purpose of this study is to discuss the effect on microstructure, mechanical properties and corrosion behavior of these resulting weldments with different EBW parameter.
At first, the bead on plate (BOP) method is used to understand the effect on EBW penetration of 3mm alloy 690 and 304L SS plate resulting from different welding parameter. Then the parameters are evaluated and used to proceed with the alloy 690 and 304L SS plate autogenous and dissimilar welding.
The BOP experiments show that the EBW penetration is increased with increasing heat input. When the critical penetration condition is attained, the weldment surface is usually integrated, and the parameter of this condition is the best parameter for autogenous butt-welding. However, because of the plate-butt seam existing during autogenous butt-welding, the critical BOP parameters need a little correction to proceed with alloy 690 and 304L SS autogenous welding.
According to the butt-welding result, the microhardness of autogenous welding fusion zone is close to their basemetal, for the variation of parameter heat input is unobvious. Relatively, due to the basemetal dilution is diverse, the dissimilar welding fusion zone composition is different, and their hardness will change obviously. When 304L SS dilution in fusion zone is more, the hardness is lower than both basemetal; alloy 690 dilution is more, the hardness is near alloy 690 basemetal.
After tensile test, the tensile strength of alloy 690 autogenous weldment is little lower than alloy 690 basemetal. And 304L SS autogenous weldment have good mechanical property, for tensile strength is higher than 304L SS. Otherwise, when alloy 690 dilution is more in fusion zone, its weldment tensile strength is near alloy 690 autogenous one.
Owing rapid solidification of EBW, the subgrain organization of butt weldment is fine and microsegregation is unapparent to make IGC resistant ability well. According to the result of Modified Huey test, there is light pitting at subgrain boundary in alloy 690 autogenous weldment only. And 304L SS autogenous weldment reveals that δ-ferrite between austenite subgrain is easy to be etched. Finally, the resistant ability of dissimilar weldment changes greatly while their fusion zone composition is different. If there is more 304L SS dilution in fusion zone, the subgrain boundary of the fusion zone will be easy to be etched and viewed clearly. If there is more alloy 690 dilution in fusion zone, there will be a few pitting in it, then the resistance ability will be nice.
1. T. Ishihiara, “Corrosion Failure and Its Prevention in Light Water Reactor”, Welding International, No.3, pp.209-216, 1989.
2. R.A. Speranzini, P.A. Burchart, and K.A. Kanbai,”Corrosion Response of Nuclear Reactor Materials to Mixtures of Decontamination Reagents”, MP/Mebruary, pp.67-72, 1989.
3. H. C. Burhard and A. J. Bursle: Final Report, Project 02-5839-001, Southwest Research Institute, San Antonio, TX, 1978.
4. U.S. Nuclear Regulatory Commission, Jet Pump Hold-Down Beam Failure, NRC Information Notice 93-101, December 17, 1993.
5. V. N. Shah and P. E. Mac Donald. ed., Aging and Life Extension of Major Light Water Reactor Components, Elsevier Science Publishers B.V., Amstrerdam, Netherland, 1993.
6. 葉宗洸,余明昇,“國內外沸水式反應器壓力槽內部組件的劣化問題”, 核研季刊, 第二十二期, pp.49-69, 1997.
7. G. J. Theus, R. H. Emanuelson and S. F. Chou, “Stress Corrosion Cracking of Alloy 600 and 690 in All Volatile Treated Water at Elevated Temperature “, EPRI Report NP-3061, 1983.
8. B. P. Miglin and G. J. Theus, “Stress Corrosion Cracking of Alloy 600 and 690 in All-Volatile-Treated Water at Elevated Temperature “, EPRI Report NP-5761M, 1988.
9. R. A. Page and A. McMinn, “Stress Corrosion Cracking Resistance of Alloys 600 and 690 and Compatible Weld Metals in BWRs”, EPRI Report NP-5882M, 1988.
10. R. A. Page, “Stress Corrosion Cracking of Alloys 600 and 690 and Nos.82 and 182 Weld Metals in High Temperature Water”, Corrosion, Vol.39, No.10, pp.409-421, 1983.
11. C. L. Briant, and E. L. Hall, ”The Microstructural Causes of Intergranular Corrosion of Alloys 82 and 182”, Corrosion, Vol.43, pp.539-547, 1987.
12. 王總守, “電子束銲接加工原理及其應用”, 機械月刊, 第二十五卷, 第五期, pp. 254-269, 1994.
13. H. J. Stone, S. M. Roberts, and R. C. Reed, “A Process Model for the Distortion Induced by the Electron-Beam Welding of a Nickel-Based Superalloy”, Metallurgical an Materials Transactions A, Volume 31A, September 2000, pp. 2261-2273.
14. Y. S. Lim, J. S. Kim, and H. S. Kwon, “Effects of Sensitization Treatment on the Evolution of Cr Carbides in Rapidly Solidified Ni-base Alloy 600 by a CO2 Laser Beam”, Materials Science and Engineering, A279, pp. 192-200, 2000.
15. Y. S. Kim, J. H. Suh, I. . Kuk and J.S. Kim, “Microscopic Investigation of Sensitized Ni-Base Alloy 600 after Laser Surface Melting”, Metallurgical and Materials Transactions A, Vol.28A, No.5, pp1223-1231, 1997.
16. Michael Fox, Proc. Seminar on Countermeasures for Pipe Cracking in BWRs, EPRI, Palo Alto, California, Vol.1, Paper 1, 1980.
17. B. P. Miglin, and L. W. Sarver, “ Mechanism of Intergranular Corrosion of Inconel 600 Tubing in PWR Steam Generators’, EPRI Report NP-3957M, 1985.
18. J. J. Kai, G. P. Yu, C. H. Tsai, M. N. Liu, and S. C. Yao, “The Effects of Heat Treatment on the Chromium Depletion, Precipitate Evolution, and Corrosion Resistance of Inconel Alloy 690”, Metall. Trans. A, Vol.20A, pp.2057-2067, 1989.
19. R. Y. Xue, “Corrosion Test of Plugging Procedure for Steam Generator of Qinshan Nuclear Power Plant“, Nuclear Power Engineering, Vol.14, pp.340-343, 1993.
20. K. Stiller, J. Nilsson, and K. Norring, “Structure, Chemistry, and Stress Corrosion Cracking of Grain Boundaries in Alloys 600 and 690”, Metall. Trans. A, Vol. 27A, pp.327-341, 1996.
21. A. McMinn, and R. A. Page, “Stress Corrosion Cracking of Inconel Alloys and Weldments in High-Temperature Water - The Effect of Sulfuric Acid Addition”, Corrosion, Vol.44, No.4, pp.239-249, 1988.
22. R. E. Gold, D. L. Harrod, R. G. Aspden, and A. J. Baum, “Alloy 690 for Steam Generator Tubing Applications”, EPRI Report NP-6997-M, 1990.
23. W. L. Mankins, and S. Lamb, “Nickel and Nickel Alloys”, 10th edn., ASM International, USA, pp.428-445, 1992.
24. R. A. Page, and A. McMinn, “Relative Stress Corrosion susceptibilities of Alloys 690 and 600 in Simulated Boiling Water Environment”, Metall. Trans. A., pp.877-887, 1986.
25. B. P. Miglin and C. E. Choemaker: Corrosion 86, Paper No.255, 1986.
26. ”Inconel 690”, Huntington Alloys, Inc., Huntington, WV, 1985.
27. S. M. Payne, and P. McIntyre, “Influence of Grain Boundary Microstructure on the Susceptibility of Alloy 600 to Intergranular Attack and Stress Corrosion Cracking”, Corrosion, Vol.44, No.5, pp.314-319, 1988.
28. J. M. Sarver, J. R. Crum, and W. L. Mankins, “Carbide Precipitation and SCC Behavior of Inconel Alloy 690”, Corrosion, Vol.44, No.5, pp.288-289, 1988.
29. D. Choi, and G.S. Was, “Pit Growth in Alloy 600/690 Steam Generator Tubes in Simulated Concentrated Environments (Cu2+, Cl- , and SO42-)”, Corrosion, Vol.46, No.2, pp.100-111, 1990.
30. J. J. Kai, C. H. Tsai, and G. P. Yu, “Nuclear Engineering and Design”, North-Holland, 1993.
31. G. P. Yu, and H. C. Yao, “The Relation Between the Resistance of IGA and IGSCC and the Chromium Depletion of Alloy 690”, Corrosion, Vol.46, No.5, pp.391-401, 1990.
32. J. M. Sarver, J. R. Crum, and W. L. Mankins, “Carbide Precipitation and SCC Behavior of Inconel Alloy 690”, Corrosion, Vol.44, No.5, pp.288-289, 1988.
33. W. T. Tsai, ”Stress Corrosion and Corrosion Fatigue Crack Growth Behaviors of Alloy 690 in Thiosulfate-containing Aqueous Environments”, The Report of NSC, R.O.C., 1996.
34. J. T. Lee, ”The Study of Pitting Corrosion on Alloy 690”, The Report of NSC, R.O.C., 1996.
35. W. Wu, and C. S. Yu, “The Weldment Properties under Mechanical Vibration”, The Nation Conference on Welding Technology, Welding Association of the R.O.C., Kaosiung, pp.74-78, March, 1996.
36. 蘇子可等,“Inconel 690合金銲接特性之研究”, 行政院原委會81年度研究報告, 1992.
37. 吳威德,游景森等,“同步次頻震盪於鎳基690合金之應力消除研究”, 核子科學, Vol.33, No.3, pp.190-199, 1996.
38. 吳威德, 孫儒宗, 許偉勳, 郭俊生, 蔡建興, 吳啟男,”Inconel 690與SUS 304L銲接特性及應力分析研究”,原子能委員會研究報告, 1993年2月.
39. W. Wu, C. H. Tsai, F. H. Kuo, W. H. Hsu and J. T. Sum, ”The Investigation on Crack Susceptibility of Alloy 690 Weldments”, Nuclear Science Journal, Vol.34, No.4, pp.247-254, 1997.
40. 鄭勝隆, ”銲材合金元素之添加對鎳基690與304L不銹鋼之銲接特性研究”, 國立成功大學機械工程研究所碩士論文, 1997.
41. C. T. Sims, N. S. Stoloff, and W. C. Hagel, “Superalloys II”, Wiley, New York, 1987.
42. E. F. Bradley, “Superalloys:A Technical Guide”, ASM International, Metals Park, 1988.
43. Sindo Kuo, Wiley, “Welding Metallurgy”, New York,1987.
44. 古錦松, “淺談電子束銲接”, 銲接與切割, 第8卷, 第5期, pp.40-45, 1998.
45. 杜青駿, ”鎳基合金之銲接特性及銲道顯微組織分析之研究”, 國立成功大學機械工程研究所碩士論文, 1997.
46. 葉東昌, ”鎳基690銲件之特性與組織改善研究”, 國立成功大學機械工程研究所碩士論文, 1999.
47. 郭聰源, ”鎳基690銲接特性研究”, 國立成功大學機械工程研究所博士論文, 1999.
48. 顏志軒, ”銲料中添加不同Ti合金元素對鎳基690銲件之影響”, 國立成功大學機械工程研究所碩士論文, 2001.
49. G. LaFlamme, J. Knoefel, “Application of Electron Beam Welding”, International Conference on Power Beam Technology, Brighton, 10-12 September, Abington, Cambridge, 1986, pp. 59-74.
50. 黑田秀郎撰, 鄭文峰譯, 協志工業叢書, “電子射束焊接”, 臺北市, 1976.
51. 洪祖昌, “從電子束焊接談技術引進與研究發展”, 機械工業, pp. 66-71, 1985年 10月.
52. H. Tong and W. H. Giedt, “A Dynamic Interpretation of Electron Beam Welding”, Welding Research Supplement, June 1970, pp. 259s-266s.
53. S. Koga, M. Inuzuka, H. Nagatani, T. Iwase, H. Masuda, and M. Ushio, “Sfudy of all Postion Electron beam Welding Process for Pipeline Joints”, Science and Technology of Welding and Joining, Vol. 5, No. 2, pp. 1362-1718, 2000.
54. Robert, E. Reed-Hill, and Reza Abbaschian, Physical Metallury Principle, 3 rd edn., Internation Thomson Publishing, 1992.
55. J. W. Rutter, and B. Chalmers, Can. J. of Phys., Vol.31, pp.15, 1953.
56. R. F. Sekerka, J. Appl. Physiol., Vol.36, pp.264, 1965.
57. Sindo Kou, Transport Phenomena and Materials Processing, John Wiley and Sons, New York, 1996.
58. J. R. Crum, K. A. Hech, and T. M. Angeliu, “Effect of Different Thermal Treatments on the Corrosion Resistant of Alloy 690 Tubing”, EPRI Report NP-6703-M, 1990.
59. 王振欽, ”銲接學”, 登文書局, 1987年9月.
60. ASM,“Metals Handbook”, 10th Edition, Vol.2, International, 1990.
61. 王繼敏, ”不銹鋼與金屬腐蝕”, 科技圖書股份有限公司, 1990年11月.
62. 蔡政宏,”690合金銲件之熱龜裂敏感性研究“, 私立義守大學材料系碩士論文, 1997年7月.
63. “電銲作業手冊”, 中船公司, 1994年6月.
64. “機電工程金屬材料手冊下冊”, 上海科學技術出版社, 1990.
65. Franticek Kolenic, Miroslav Kosecek, Batislava/Czechoslovakia, “The Influence of Electron Beam Focusing on the Shape and Depth of the Weld”, Welding and Cutting, 11/1992, pp.24-26.
66. B.S. Yilbas, M. Sami, J. Nickel, A. Coban, S.A.M. Said, “Introduction Into the Electron Beam Welding of Austenitic 321-type Stainless Steel”, Journal of Materials Processing Technology 32 (1998) 13-20.
67. D. Fritz, “Focusssing of High Energy Density Beams”, Welding in the World/Le Soudage dans le Monde. Vol. 39. No. 4, pp. 172-178, 1997.
68. Dann E. Passoja, “Penetration of Solids by High-Power-Density Electron Beams”, British Welding Journal, January 1967, pp. 13-16.
69. 私立南台科技大學私人研究資料,未發表。
70. J. A. Brooks and A. W. Thompson, “Microstructural Develop and Solidification Cracking Susceptibility of Austenitic Stainless Steel Welds”, International Materials Reviews, Vol. 36, No. 1, pp. 16-44, 1991.
71. S. Katayama and A. Matsunawa: Proc. Int. Cong. on Applications of Lasers and Electro-optics, San Francisco, 1985.
72. J. C. Lippold: Weld. J., 1985, 64, 125s-136s.
73. Y. Arata, F. Matsuda, and S. Saruwatari: Trans. JWRI, 1974, 3, 79-88.
74. Y. Arata, F. Matsuda, and S. Katayama: Trans. JWRI, 1977, 6, 105-116.