簡易檢索 / 詳目顯示

研究生: 謝景坤
Hsieh, Ching-Kun
論文名稱: 應用於衛星與地基合成孔徑雷達之雙系統角反射器設計與性能評估
Design and Performance Evaluation of a Dual-System Corner Reflector for Satellite and Ground-Based Synthetic Aperture Radar Applications
指導教授: 余騰鐸
Yu, Teng-To
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 107
中文關鍵詞: 角反射器衛星合成孔徑雷達地基合成孔徑雷達植被環境地表變形監測
外文關鍵詞: Corner Reflector, Satellite SAR, Ground-Based SAR, vegetated-terrain deformation monitoring
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對Ku 波段地基SAR 在植被覆蓋坡地難以獲取穩定回波的問題,開發可同時支援C 波段衛星SAR 與Ku 波段地基SAR 的雙系統角反射器,並設計實驗探討此角反射器之實用性,最後提出此角反射器之建置標準與使用準則。
    本研究將自製之角反射器樣本供衛星SAR 監測,訂定角反射器之形狀與尺寸,並改良幾何設計使其能進行兩兩組合,得到雙系統角反射器之設計雛形 。接著使用衛星SAR 與GB-SAR 對其進行實驗,透過控制角反射器的安裝姿態與植生遮蔽率,模擬角反射器在戶外監測時 ,反射性與監測能力受外部因素影響而改變 ,解此此角反射器對姿態誤差與植生遮蔽率的容許範圍。
    GB-SAR 之實驗結果顯示,雙系統角反射器之偏轉小於15°,能提供大於0.9 之同調性;採用孔隙率27.8%的網孔反射板可有效降低風阻、提升角反射器姿態穩定性,且與實心板在同調性表現上相近。於C 波段衛星SAR 監測的植生環境中,若反射單元未受遮蔽,雙系統角反射器可將植生高度低於50cm 區域之同調性提升至0.93 ,約為架設前的2 倍;植生高度低於120 cm 區域之同調性則提升至0.87,較架設前增加0.3 倍。當植生遮蔽反射截面受植生遮蔽,遮蔽面積小於反射截面的10%,仍可提供0.9 以上的同調性。將角反射器安裝於滑動邊坡的植被區域以驗證其監測能力,經過衛星SAR 的監測與PSI 分析,雙系統角反射器能在植被區域提供穩定的反射強度訊號,並作為一長期相干且相位穩定的散射目標,成為干涉分析中的穩定相位參考 ,有效提升植被環境的地表變形監測結果之可靠性與量測精度。
    最後統整上述結果 ,提出雙系統角反射器的建制標準與使用準則 ,提供未來地質監測工程實務應用參考。

    This study tackles the difficulty of obtaining stable backscatter on vegetated slopes with Ku-band ground-based SAR (GB-SAR) by developing a dual-system corner reflector (CR) compatible with C-band satellite SAR and Ku-band GB SAR. We fabricated CR prototypes for satellite monitoring, specified shape and size, and refined a two-unit combinable geometry. Experiments with satellite SAR and GB-SAR controlled installation orientation, and vegetation occlusion to determine the tolerance ranges.

    GB-SAR results show that when the CR’s orientation change is <15°, interferometric coherence exceeds 0.9. Using perforated plates with 27.8% porosity reduces wind load, stabilizes the attitude and yields coherence comparable to that of solid plates. In C-band satellite observations over vegetation, an unoccluded CR raises coherence to 0.93 for areas with vegetation height <50 cm (about twice the baseline) and to 0.87 for areas <120 cm (≈30% above baseline). When vegetation occludes <10% of the CR aperture, coherence remains >0.9.

    Deployed on a sliding, vegetated slope, the CR provides stable backscatter and acts as a long-term coherent, phase-stable target, improving PSI results and enhancing the reliability and accuracy of the deformation monitoring. We synthesize these findings into construction standards and operational guidelines for future monitoring.

    摘要 II ABSTRACT III 致謝 VI 目錄 VII 表目錄 XI 圖目錄 XIII 第一章 前言 1 1.1 研究動機 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 合成孔徑雷達干涉(InSAR)技術演進 3 2.2 不同雷達波段於植生環境的穿透與散射特性 4 2.3 角反射器應用於監測地表變形之發展 5 第三章 研究工具與區域 7 3.1 哨兵一號(Sentinel-1A) 7 3.2 地基合成孔徑雷達(GB-SAR) 10 3.3 角反射器(CR) 12 3.3.1 設計規格 13 3.3.2 CR反射截面法向量 13 3.3.3 CR姿態(仰角、方位角) 14 3.4 輔助工具 16 3.4.1 Google Earth Engine (GEE) 16 3.4.2 Solidworks 17 3.4.3 加速度計(Accelerometer) 18 3.5 研究區域 19 3.5.1 台南市東區後甲里後甲公園 19 3.5.2 台南市關廟區新埔里許縣溪河堤 21 3.5.3 台南市白河區關嶺里關子嶺 22 3.5.3.1 滑動邊坡概述 22 3.5.3.2 CR架設位置 24 第四章 研究流程與實驗設計 26 4.1 角反射器研究流程 27 4.1.1 樣品測試 27 4.1.2 秀巒專案 29 4.1.3 後續改良 31 4.1.4 雙系統角反射器之外型設計 32 4.2 實驗設計 33 4.2.1 植生高度與遮蔽對CR反射訊號影響實驗(衛星SAR) 33 4.2.1.1 植被高度分類 34 4.2.1.2 植生遮蔽率 36 4.2.1.3 CR固定方式 42 4.2.2 CR姿態對反射訊號影響實驗(GB-SAR) 43 4.2.2.1 CR放置方式與姿態角分類 44 4.2.2.2 GB-SAR成像參數設置 49 4.2.3 CR監測能力驗證實驗(衛星SAR) 50 第五章 結果與討論 52 5.1 植生高度與遮蔽對CR反射訊號影響實驗結果 52 5.1.1 植生高度之影響 52 5.1.1.1 反射訊號結果 53 5.1.1.2 CR穩固性驗證 56 5.1.2 植生遮蔽之影響 56 5.2 CR姿態對反射訊號影響實驗結果 59 5.2.1 反射強度結果 59 5.2.2 同調性結果 62 5.2.2.1 同姿態干涉 62 5.2.2.2 不同姿態干涉 62 5.2.3 不同反射板材質比較 65 5.3 CR監測能力驗證實驗結果 67 5.3.1 反射訊號結果 68 5.3.2 PSI分析結果 69 5.4 雙系統CR建置準則 71 第六章 結論與建議 73 6.1 結論 73 6.2 建議 74 第七章 參考文獻 75 第八章 附錄 78 8.1 SAR系統之影響因素 78 8.1.1 偏極模式(Polarization) 78 8.1.2 入射角與觀測幾何(Incidence Angle & Imaging Geometry) 78 8.1.3 地形遮蔽與影像失真影響 79 8.2 D-InSAR成像原理 80 8.3 衛星影像處理軟體與流程 81 8.3.1 SNAP與衛星影像處理流程 81 8.3.1.1 條帶分割與精密軌道校正(TOPSAR Split & Apply Orbit) 81 8.3.1.2 影像套合(Back Geocoding) 82 8.3.1.3 去除條帶(TOPSAR Deburst) 83 8.3.1.4 干涉處理(Interferogram Formation) 84 8.3.1.5 影像校正(Terrain Correction) 84 8.3.2 StaMPS與PSI分析流程 85 8.3.2.1 SNAP影像前處理 86 8.3.2.2 PS點選擇與CR驗證方法 86 8.3.2.3 誤差處理與相位解纏 87 8.4 衛星SAR實驗影像 88 8.5 GB-SAR實驗影像 89

    1. Balss, U., Gisinger, C., & Eineder, M. (2018). Measurements on the absolute 2-D and 3-D localization accuracy of TerraSAR-X. Remote Sensing, 10(4), 656.
    2. Bamler, R. (2000). Interferometric stereo radargrammetry: Absolute height determination from ERS-ENVISAT interferograms. IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120),
    3. Ferretti, A., Prati, C., & Rocca, F. (2000). Analysis of permanent scatterers in SAR interferometry. IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120),
    4. Franceschetti, G., & Lanari, R. (2018). Synthetic aperture radar processing. CRC press.
    5. Garthwaite, M., Nancarrow, S., Hislop, A., Thankappan, M., Dawson, J., & Lawrie, S. (2015). Design of radar corner reflectors for the Australian Geophysical Observing System. Geoscience Australia, 3, 490.
    6. Grossman, D., Faber-Langendoen, D., Weakley, A., Anderson, M., Bourgeron, P., Crawford, R., Goodin, K., Landaal, S., Metzler, K., & Patterson, K. (1998). International classification of ecological communities: terrestrial vegetation of the United States. The Nature Conservancy, Arlington, Virginia.
    7. Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth, 112(B7).
    8. Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical research letters, 31(23).
    9. Jauvin, M., Yan, Y., Trouvé, E., Fruneau, B., Gay, M., & Girard, B. (2019). Integration of corner reflectors for the monitoring of mountain glacier areas with sentinel-1 time series. Remote Sensing, 11(8), 988.
    10. Luzi, G., Barra, A., Gao, Q., F. Espín-López, P., Palamà, R., Monserrat, O., Crosetto, M., & Colell, X. (2022). A low-cost active reflector and a passive corner reflector network for assisting landslide monitoring using multi-temporal InSAR. Remote Sensing Letters, 13(11), 1080-1089.
    11. Otoshi, T. (2003). A study of microwave leakage through perforated flat plates (short papers). IEEE Transactions on Microwave Theory and Techniques, 20(3), 235-236.
    12. Pierce, L. E., Ulaby, F. T., Sarabandi, K., & Dobson, M. C. (2002). Knowledge-based classification of polarimetric SAR images. IEEE Transactions on Geoscience and Remote Sensing, 32(5), 1081-1086.
    13. Qin, Y., Perissin, D., & Lei, L. (2013). The design and experiments on corner reflectors for urban ground deformation monitoring in Hong Kong. International Journal of Antennas and Propagation, 2013(1), 191685.
    14. Schlögel, R., Thiebes, B., Mulas, M., Cuozzo, G., Notarnicola, C., Schneiderbauer, S., Crespi, M., Mazzoni, A., Mair, V., & Corsini, A. (2017). Multi-temporal X-Band radar interferometry using corner reflectors: Application and validation at the Corvara Landslide (Dolomites, Italy). Remote Sensing, 9(7), 739.
    15. Xia, Y., Kaufmann, H., & Guo, X. (2002). Differential SAR interferometry using corner reflectors. IEEE International Geoscience and Remote Sensing Symposium,
    16. 張祐霖. (2024). 臺灣西南部山區邊坡穩定性探討與利用雷達回波及降雨資料建立邊坡災害預警系統 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/u6eb8f
    17. 盧玉芳. (2007). 以雷達干涉技術監測雲林地層下陷. In 土木工程系所 (Vol. 碩士, pp. 106). 新竹市: 國立交通大學.

    QR CODE