簡易檢索 / 詳目顯示

研究生: 蔡淑儀
Tsai, Shu-Yi
論文名稱: 以射頻磁控濺鍍法製備氧化鋰鋅薄膜及其同/異質結構元件之製作與特性分析
Li-doped ZnO thin film and homo/hetero-junction device deposited by RF sputtering
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 137
中文關鍵詞: 氧化鋅透明導電膜同步輻射
外文關鍵詞: ZnO, Transparent Conducting Films, XAS
相關次數: 點閱:114下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著光電產業的蓬勃發展,氧化鋅(ZnO)在光電材料應用方面也隨之增廣。本質氧化鋅為 n 型的半導體氧化物,如果能成功研發 p 型的氧化鋅與n型的氧化鋅搭配,將可開發氧化鋅於光電元件中全新的應用領域。但目前最大問題在於 p 型氧化鋅的製作,因氧化鋅本身會有自我補償(self-compensating)效應與摻雜之元素於氧化鋅中低溶解度等問題。因此本研究對氧化鋅薄膜及元件做一系列探討,主要分為以下四大部分,第一部分為射頻磁控濺鍍法製備鋰摻雜氧化鋅薄膜。第二部分為利用同步輻射分析薄膜性質。第三部分為製備氧化鋅異質接面元件。第四部份為製備氧化鋅同質接面元件。
    首先以射頻磁控濺鍍法,藉由改變不同鋰之摻雜濃度,探討濺鍍參數對薄膜的影響。完成薄膜製備後進行不同溫度(350~550℃)之氬氣氛退火處理,使其進一步改善薄膜的性質。本研究以同步輻射分析,對於不同鋰摻雜含量之氧化鋅薄膜之局部原子排列與鄰近原子之電子能態結構逐一做分析,例如吸收原子之鄰近原子數、鄰近原子種類、吸收原子與各鄰近原子層之鍵長以及電子能態結構等訊息。從半導體應用的觀點,一般最基本的半導體結構型式即是 p-n 接面的結構,目前 p-n 異質接面二極體主要由 n 型氧化鋅結合穩定 p型透明導電材料。因此本研究利用氧化鎳薄膜結合氧化鋅薄膜製備p-NiO/n-ZnO異質接面元件,再利用I-V量測系統探討元件之特性。本研究最後並製備氧化鋅薄膜之n-ZnO/p-ZnO:Li同質接面透明導電氧化物元件,並藉由p-NiO/n-ZnO異質接面元件之經驗,引入於n-ZnO/p-ZnO同質接面元件。若能成功製備出以ZnO為基礎材料的透明導電氧化物元件,將會使半導體產業帶來嶄新的應用發展方向。
    實驗結果顯示,鋰摻雜氧化鋅薄膜,出現C軸(002)優選方向,經退火處理過後薄膜結晶優選方向更加明顯。在不同鋰掺雜濃度下,薄膜之穿透率在可見光範圍平均達70%以上,薄膜光學能隙(Eopt)隨摻雜量增加而窄化現象產生。經過退火之後,穿透率皆有提高,最高約為80%。經由450℃的後熱處理,鋰摻雜氧化鋅薄膜呈現 p 型導電性質,具有最低之電阻率為0.11 ohm-cm,電子濃度及移動率分別為3.13×1018 cm-3 及2.2 cm2/Vs。由此可知,藉由摻雜鋰原子進入氧化鋅薄膜中之方法,雖然能改善氧化鋅薄膜的導電率,但降低薄膜的穿透率。由XANES實驗數據分析結果可知氧化鋅薄膜經添加不同鋰摻雜濃度後,並不會改變其鋅價數(Zn2+)及晶型結構。由EXAFS之數據中顯示,未添加鋰之氧化鋅薄膜其氧配位數為4.018,Zn-O鍵長為1.971 Å,而添加不同比例之鋰後,由結構參數特性顯示,添加鋰會造成配位數及鍵長的改變。最後利用磁控射頻濺鍍系統,組成氧化鋅薄膜之 p-n 同/異質接面後,藉由鋁做為金屬電極,利用I-V量測系統探元件之I-V特性。由I–V曲線顯示同/異質接面皆具有整流特性。實驗結果顯示,p-NiO/n-ZnO異質接面元件,可得到較佳的穿透率、較大的光響應比以及較快的光響應時間。

    In the growing industry of photoelectric devices, ZnO is extensively used as the photoelectric material. The native ZnO films show n-type semiconductor behavior as the microstructure defects are carefully controlled. If the p-type ZnO films can be successfully made, the application scope will be further enlarged. It is difficult to achieve controllable p-type carrier doping of ZnO thin films, due to self-compensation effect of the opposite charge carriers and low solubility of the doping acceptors. Therefore, understanding the behaviors of defects in ZnO is a very important subject. Four issues investigated in this study are (1) the effects of deposition and annealing parameters on the structural, electrical and optical properties of ZnO:Li films; (2) X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were used to observe the influence of Li-doped ZnO films, and tried to understand the relationship between electronic structure and the properties of the films; (3) the effects of deposition parameters on the structural properties of p-NiO/n-ZnO heterojunctiondevice;(4) the effects of deposition parameters on the structural properties of ZnO-based homojunction device.
    In this work, lithium-doped ZnO (ZnO:Li) films were grown on glass substrates by r.f. reactive magnetron sputtering. We used different Li doping concentrations and various sputtering parameters to evaluate on the characteristics of thin films. The sputtered films were subsequently annealed at different temperatures (350~550℃) in argon ambient to further modulate their properties. The conductive mechanism and the microstructure defects are very important for stable p-type ZnO:Li films but still unknown. We will use an X-ray absorption near-edge structural (XANES) and extended X-ray absorption fine structural (EXAFS) spectroscopy to study the atomic defect information in the p-type ZnO:Li films and concluded the possible conductive mechanism. EXAFS has been accredited as a precise method for molecular structural characterization. It could provide the information on the atomic structure around the specific atom (in this experiment, it is Zn atom), such as near-neighbor atom distance and the fluctuation in bond length, which allows us to understand the essential mechanism of p-type behavior of ZnO:Li. The p–n junction is widely-adopted structure for UV photodetector. A number of p–n heterojunction have been reported by combining n-type ZnO with other p-type materials such as NiO, CuAlO2, CuGaO2, SrCu2O2, and AgInO2. Based on these results, the p-NiO/n-ZnO heterojunction devices are prepared by magnetron sputtering for UV photodetector. In addition, the recent research of ZnO/NiO heterojunctions in UV-detector also attracts many interesting attentions. Besides, the fabrication of ZnO-based homojunction using p-type ZnO films indicates the extensive applications of ZnO.
    The experimental results reveal that all ZnO:Li films have (002) c-axis preferred orientation,which is more intensive after annealing. Regarding the optical properties, the transparency of the ZnO:Li film is about 70% in average during the visible spectrum. The optical band gap decreases with increasing the doping concentration of Li, indicating that the optical band gap of film is narrowing. After annealing, the film transparency increases and the highest one is about 80%. After annealing at 450℃, the lowest resistivity of 0.11 ohm-cm is obtained with the hole concentration and mobility of 3.13×1018 cm-3and 2.2 cm2/Vs , respectively. In conclusion, doping Li into ZnO films can improve the electrical conductivity, but lower the transparency. Annealing process, in contrast, enhances the film transparency but reduces the electrical conductivity. Without doping Li into the ZnO thin films, the coordination numbers (CN) of Zn atom and crystal structure are not changed. EXAFS spectra also indicate that the CN and the bond distances are 4.018 and 1.971 Å respectively. EXAFS analysis of ZnO:Li shows that the CN and bond distances are notably changed due to the incorporation of Li. Finally, high quality p-type ZnO:Li and n-type ZnO thin films are grown on glass substrates using r.f. reactive magnetron sputtering. For the analysis of homojunctions device, use Al as the metal electrode for I-V measurement. Results show that the homo/hetero-junctions device has good rectification characteristic. As a result, there are some better performance of the responsivity, rejection ratio and light transmission on the p-NiO/n-ZnO heterojunction structure.

    摘 要 I Abstract III 致 謝 VI 總目錄 VII 圖目錄 IX 中英名詞與符號對照表 XIII 第一章 緒 論 1 1-1 簡介 1 1-2 研究動機 3 第二章 基礎理論與文獻回顧 5 2-1 透明導電氧化物 5 2-2 透明氧化物薄膜之導電性質 8 2-3 透明氧化物薄膜之光學特性 11 2-4 氧化鋅之簡介 15 2-5 同步輻射原理 22 2-6 氧化鋅文獻回顧與探討 27 第三章 實驗步驟與方法 31 3-1 實驗材料 31 3-1-1 基材 31 3-1-2 靶材 31 3-1-3 濺鍍氣體 32 3-2 實驗系統 33 3-2-1 真空系統與濺鍍系統 33 3-2-2 退火系統 34 3-3 實驗流程 36 3-3-1 鍍膜參數及步驟 37 3-3-2 鍍膜熱處理步驟 40 3-4 薄膜性質測試與分析 41 3-4-1 表面粗度儀 41 3-4-2 低掠角X光繞射分析儀 42 3-4-3 感應耦合電漿質譜分析儀 43 3-4-4 高解析度場發射電子微探儀 43 3-4-5 二次離子質譜儀 44 3-4-6 X光光電子能譜 45 3-4-7 可見光吸收光譜儀 45 3-4-8 光激發光譜 46 3-4-9 霍爾效應量測 47 3-4-10 X光吸收光譜分析 50 3-4-11 電性時效量測系統 51 第四章 以射頻磁控濺鍍法製備鋰摻雜之氧化鋅薄膜 53 4-1 工作壓力對ZnO:Li薄膜之影響 53 4-1-1 ZnO:Li薄膜微結構分析 53 4-1-2 ZnO:Li薄膜電性分析 56 4-1-3 ZnO:Li薄膜光學分析 57 4-1-4 ZnO:Li薄膜之SEM薄膜表面形態分析 58 4-2 鋰掺雜量對ZnO:Li薄膜之影響 60 4-2-1 薄膜成份分析 60 4-2-2 ZnO:Li薄膜微結構分析 64 4-2-3 ZnO:Li薄膜電性分析 67 4-2-4 ZnO:Li薄膜光學分析 70 4-2-5 ZnO:Li薄膜之PL吸收光譜分析 73 4-2-6 ZnO:Li薄膜之X光吸收光譜分析 75 4-2-7 ZnO:Li薄膜之SEM薄膜表面形態分析 81 4-2-8 ZnO:Li薄膜之穩定性測試 84 4-3 熱處理對溫度對ZnO:Li薄膜結構及性質之影響 86 4-3-1 ZnO:Li薄膜微結構分析 86 4-3-2 ZnO:Li薄膜電性分析 88 4-3-3 ZnO:Li薄膜光學分析 89 4-3-4 ZnO:Li薄膜之PL吸收光譜分析 92 4-4 小結 94 第五章 p-n同/異質接面之製作 96 5-1 p-NiO/n-ZnO異質接面 96 5-1-1 結構分析 96 5-1-2 光學分析 98 5-1-3 電性分析 102 5-1-4 元件整合之I-V特性分析 103 5-2 n-ZnO/ p-ZnO:Li同質接面 108 5-2-1 光學分析 109 5-2-2 元件整合之I-V特性分析 111 5-3 小 結 115 第六章 總結論 116 第七章 參考文獻 118

    [1] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, S. J. Park,"UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering",Adv. Mater., 18 (2006) 2720.
    [2] Q. A. Xu, J. W. Zhang, K. R. Ju, X. D. Yang, X. Hou,"ZnO thin film photoconductive ultraviolet detector with fast photoresponse",J. Cryst. Growth, 289 (2006) 44.
    [3] K. Prabakar, C. M. Kim, C. M. Lee,"UV, violet and blue-green luminescence from RF sputter deposited ZnO : Al thin flims",Cryst. Res. Technol, 40 (2005) 1150.
    [4] D. C. Look,"Recent advances in ZnO materials and devices",Mat. Sci. Eng. B-Solid, 80 (2001) 383.
    [5] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, et al.,"Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO",Nat. Mater., 4 (2005) 42.
    [6] A. Ashrafi, C. Jagadish,"Review of zincblende ZnO: Stability of metastable ZnO phases",J. Appl. Phys., 102 (2007) 071101.
    [7] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner,"Recent progress in processing and properties of ZnO",Progress in Materials Science, 50 (2005) 293.
    [8] C. H. Seager, D. C. McIntyre, W. L. Warren, B. A. Tuttle,"Charge trapping and device behavior in ferroelectric memories",Appl. Phys. Lett., 68 (1996) 2660.
    [9] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono,"P-type electrical conduction in transparent thin films of CuAlO2",Nature, 389 (1997) 939.
    [10] B. Saha, R. Thapa, S. Jana, K. K. Chattopadhyay,"Optical and electrical properties of p-type transparent conducting CuAlO2 thin film synthesized by reactive radio frequency magnetron sputtering technique",Indian Journal of Physics, 84 (2010) 1341.
    [11] H. Yanagi, T. Hase, S. Ibuki, K. Ueda, H. Hosono,"Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure",Appl. Phys. Lett., 78 (2001) 1583.
    [12] D. Varandani, B. Singh, B. R. Mehta, M. Singh, V. N. Singh, D. Gupta,"Resistive switching mechanism in delafossite-transition metal oxide (CuInO2-CuO) bilayer structure",J. Appl. Phys., 107 (2010) 103703.
    [13] K. Ueda, T. Hase, H. Yanagi, H. Kawazoe, H. Hosono, H. Ohta, M. Orita, M. Hirano,"Epitaxial growth of transparent p-type conducting CuGaO2 thin films on sapphire (001) substrates by pulsed laser deposition",J. Appl. Phys., 89 (2001) 1790.
    [14] A. Kudo, H. Yanagi, H. Hosono, H. Kawazoe,"SrCu2O2: A p-type conductive oxide with wide band gap",Appl. Phys. Lett., 73 (1998) 220.
    [15] D. Y. Wang, S. X. Gao, G. Li, M. Zhao,"The structure, optical and electrical properties of Li-N dual-acceptor doped p-type ZnO thin films prepared by sol-gel method",Acta. Phys. Sin-Ch Ed., 59 (2010) 3473.
    [16] R. Q. Ding, H. Q. Zhu, Q. G. Zeng,"Fabrication of p-type ZnO thin films via magnetron sputtering and phosphorus diffusion",Vacuum, 82 (2008) 510.
    [17] S. F. Chen, W. Zhao, W. Liu, S. J. Zhang,"Preparation, characterization and activity evaluation of p-n junction photocatalyst p-ZnO/n-TiO2",Appl. Surf. Sci, 255 (2008) 2478.
    [18] M. Yan,"Atomistic Study of Energy and Structure of Surfaces in NiO",MRS Proceedings, 357 (1994) 441.
    [19] M. Yan, S. P. Chen, T. E. Mitchell, D. H. Gay, S. Vyas, R. W. Grimes,"Atomistic studies of energies and structures of (hk0) surfaces in NiO",Philosophical Magazine A, 72 (1995) 121.
    [20] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono,"Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors",Nature, 432 (2004) 488.
    [21] A. Hartmann, M. K. Puchert, R. N. Lamb,"Influence of copper dopants on the resistivity of ZnO films",Surf. Interface. Anal., 24 (1996) 671.
    [22] Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, H. W. White,"Synthesis of p-type ZnO films",J. Cryst. Growth, 216 (2000) 330.
    [23] Y. R. Ryu, T. S. Lee, J. H. Leem, H. W. White,"Fabrication of homostructural ZnO p-n junctions and ohmic contacts to arsenic-doped p-type ZnO",Appl. Phys. Lett., 83 (2003) 4032.
    [24] Y. R. Ryu, T. S. Lee, H. W. White,"Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition",Appl. Phys. Lett., 83 (2003) 87.
    [25] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell,"Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy",Appl. Phys. Lett., 81 (2002) 1830.
    [26] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, A. Shimizu,"Growth of p-type zinc oxide films by chemical vapor deposition", Jpn. J. Appl. Phys. Part 2-Letters, 36 (1997) 1453.
    [27] M. Joseph, H. Tabata, H. Saeki, K. Ueda, T. Kawai,"Fabrication of the low-resistive p-type ZnO by codoping method",Physica B, 302 (2001) 140.
    [28] X. L. Guo, H. Tabata, T. Kawai,"Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron cyclotron resonance source",J. Cryst. Growth, 223 (2001) 135.
    [29] T. Yamamoto,"Codoping for the fabrication of p-type ZnO",Thin Solid Films, 420 (2002) 100.
    [30] G. A. Mohamed, E. Mohamed, A. Abu El-Fadl,"Optical properties and surface morphology of Li-doped ZnO thin films deposited on different substrates by DC magnetron sputtering method",Physica B, 308 (2001) 949.
    [31] A. Onodera, N. Tamaki, Y. Kawamura, T. Sawada, H. Yamashita,"Dielectric activity and ferroelectricity in piezoelectric semiconductor Li-doped ZnO",Jpn. J. Appl. Phys., Part 1, 35 (1996) 5160.
    [32] 徐群和、康俊勇,"ZnO中Li相關缺陷結構性質",發光學報,27 (2006).
    [33] H. Sato, T. Minami, S. Takata, T. Yamada,"Transparent Conducting P-Type Nio Thin-Films Prepared by Magnetron Sputtering",Thin Solid Films, 236 (1993) 27.
    [34] I. Hamberg, C. G. Granqvist,"Evaporated Sn-Doped In2o3 Films - Basic Optical-Properties and Applications to Energy-Efficient Windows",J. Appl. Phys., 60 (1986) R123.
    [35] B. J. Ingram, G. B. Gonzalez, D. R. Kammler, M. I. Bertoni, T. O. Mason,"Chemical and structural factors governing transparent conductivity in oxides",J. Electroceram, 13 (2004) 167.
    [36] 楊明輝,"透明導電膜",藝軒圖書出版社, (2006) p.53.
    [37] K. Jacobs,"F. A. Kröger. The Chemistry of Imperfect Crystals. 2nd Revised Edition, Volume 1: Preparation, Purification, Crystal Growth And Phase Theory. North-Holland Publishing Company - Amsterdam/London 1973 American Elsevier Publishing Company, Inc. - New York 313 Seiten, zahlreiche Abbildungen und Tabellen, Kunstleder Preis Dfl. 70.00",Kristall und Technik, 9 (1974) K67.
    [38] C. Kittel,"Introduction to Solid State Physics",Wiley, (2005) p.680.
    [39] 楊明輝,"金屬氧化物透明導電材料的基本原理",工業材料雜誌,179 (2001) p.134.
    [40] T. Minami, H. Nanto, S. Takata,"Optical-Properties of Aluminum Doped Zinc-Oxide Thin-Films Prepared by Rf Magnetron Sputtering", Jpn. J. Appl. Phys. Part 2-Letters, 24 (1985) L605.
    [41] H. W. Lee, S. P. Lau, Y. G. Wang, K. Y. Tse, H. H. Hng, B. K. Tay,"Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique",J. Cryst. Growth, 268 (2004) 596.
    [42] J. E. Jaffe, A. C. Hess,"Hartree-Fock Study of Phase-Changes in Zno at High-Pressure",Phys. Rev. B, 48 (1993) 7903.
    [43] L. Schmidt-Mende, J. L. MacManus-Driscoll,"ZnO - nanostructures, defects, and devices",Mater Today, 10 (2007) 40.
    [44] R. A. Laudise, A. A. Ballman,"Hydrothermal Synthesis of Zinc Oxide and Zinc Sulfide",J. Phys. Chem., 64 (1960) 688.
    [45] W.-J. Li, E.-W. Shi, W.-Z. Zhong, Z.-W. Yin,"Growth mechanism and growth habit of oxide crystals",J. Cryst. Growth, 203 (1999) 186.
    [46] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoc,"A comprehensive review of ZnO materials and devices",J. Appl. Phys., 98 (2005) 041301.
    [47] Y. F. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Q. Zhu, T. Yao,"Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization",J. Appl. Phys., 84 (1998) 3912.
    [48] G. W. Tomlins, J. L. Routbort, T. O. Mason,"Zinc self-diffusion, electrical properties, and defect structure of undoped, single crystal zinc oxide",J. Appl. Phys., 87 (2000) 117.
    [49] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang,"ZnO nanowire UV photodetectors with high internal gain",Nano Lett., 7 (2007) 1003.
    [50] M. N. Kamalasanan, S. Chandra,"Sol-gel synthesis of ZnO thin films",Thin Solid Films, 288 (1996) 112.
    [51] D. C. Koningsberger, R. Prins,"X-ray absorption : principles, applications, techniques of EXAFS, SEXAFS, and XANES",Chemical analysis,Wiley, (1988) p.673.
    [52] B. K. Teo,"EXAFS : basic principles and data analysis",Inorganic chemistry concepts,Springer-Verlag, (1986) p.153.
    [53] 詹博旭,"氧化鋅摻雜氧化釩多層膜之結構與磁性研究",光電科學與工程研究所,國立成功大學, 碩士論文 (2006) p.45.
    [54] L. Wen, Z. Shao, Y. Fang, K. M. Wong, Y. Lei, L. Bian, G. Wilde,"Selective growth and piezoelectric properties of highly ordered arrays of vertical ZnO nanowires on ultrathin alumina membranes",Appl. Phys. Lett., 97 (2010) 053106.
    [55] M. A. Lim, Y. W. Lee, S. W. Han, I. Park,"Novel fabrication method of diverse one-dimensional Pt/ZnO hybrid nanostructures and its sensor application",Nanotechnology, 22 (2011) 035601.
    [56] C. L. Wei, Y. C. Chen, C. C. Cheng, K. S. Kao, D. L. Cheng, P. S. Cheng,"Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator",Thin Solid Films, 518 (2010) 3059.
    [57] D. S. Ginley, C. Bright,"Transparent conducting oxides",Mrs. Bull., 25 (2000) 15.
    [58] E. Fortunato, P. Nunes, A. Marques, D. Costa, H. Aguas, I. Ferreira, M. E. V. Costa, M. H. Godinho, P. L. Almeida, J. P. Borges, et al.,"Transparent, conductive ZnO : Al thin film deposited on polymer substrates by RF magnetron sputtering",Surf. Coat. Tech., 151 (2002) 247.
    [59] B. G. Choi, I. H. Kim, D. H. Kim, K. S. Lee, T. S. Lee, B. Cheong, Y. J. Baik, W. M. Kim,"Electrical, optical and structural properties of transparent and conducting ZnO thin films doped with Al and F by rf magnetron sputter",J. Eur. Ceram. Soc., 25 (2005) 2161.
    [60] J. P. Wiff, Y. Kinemuchi, K. Watari,"Hall mobilities of Al- and Ga-doped ZnO polycrystals",Mater Lett., 63 (2009) 2470.
    [61] W. T. Yen, Y. C. Lin, P. C. Yao, J. H. Ke, Y. L. Chen,"Growth characteristics and properties of ZnO:Ga thin films prepared by pulsed DC magnetron sputtering",Appl. Surf. Sci., 256 (2010) 3432.
    [62] Y. P. Wang, J. Q. Zhou, Q. Lu, L. L. Liu, X. Zhang, X. J. Wu,"Study of Structural and Electrical Properties of Phosphorus-Doped p-Type ZnO Thin Films",Jpn. J. Appl. Phys., 49 (2010) 041103.
    [63] T. Matsuda, M. Furuta, T. Hiramatsu, H. Furuta, T. Hirao,"Crystallinity and resistivity of ZnO thin films with indium implantation and postannealing",J. Vac. Sci. Technol. A, 28 (2010) 135.
    [64] S. B. Zhang, S. H. Wei, A. Zunger,"Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO",Phys. Rev. B, 6307 (2001) 075205.
    [65] H. von Wenckstern, R. Pickenhain, H. Schmidt, M. Brandt, G. Biehne, M. Lorenz, M. Grundmann, G. Brauer,"Deep acceptor states in ZnO single crystals",Appl. Phys. Lett., 89 (2006) 092122.
    [66] J. J. Lander,"Reactions of Lithium as a donor and an acceptor in ZnO",J. Phys. Chem. Solids, 15 (1960) 324.
    [67] K. Hümmer,"Interband Magnetoreflection of ZnO",physica status solidi (b), 56 (1973) 249.
    [68] T. V. Butkhuzi, A. V. Bureyev, A. N. Georgobiani, N. P. Kekelidze, T. G. Khulordava,"Optical and Electrical-Properties of Radical Beam Gettering Epitaxy Grown N-Type and P-Type Zno Single-Crystals",J. Cryst. Growth, 117 (1992) 366.
    [69] Y. Gai, J. Li, S.-S. Li, J.-B. Xia, Y. Yan, S.-H. Wei,"Design of shallow acceptors in ZnO through compensated donor-acceptor complexes: A density functional calculation",Phys. Rev. B, 80 (2009) 153201.
    [70] T. Yamamoto, H. Katayama-Yoshida,"Solution using a codoping method to unipolarity for the fabrication of p-type ZnO", Jpn. J. Appl. Phys. Part 2-Letters, 38 (1999) L166.
    [71] M. Joseph, H. Tabata, T. Kawai,"p-type electrical conduction in ZnO thin films by Ga and N codoping", Jpn. J. Appl. Phys. Part 2-Letters, 38 (1999) L1205.
    [72] C. H. Park, S. B. Zhang, S. H. Wei,"Origin of p-type doping difficulty in ZnO: The impurity perspective",Phys. Rev. B, 66 (2002) 073202.
    [73] D. C. Look, B. Claftin,"P-type doping and devices based on ZnO",Physica Status Solidi B-Basic Research, 241 (2004) 624.
    [74] 楊昀達,"高緻密性AlN燒結體之製備及其熱傳導性質之研究",材料科學及工程學系,國立成功大學, 碩士論文 (1994) p.36.
    [75] P. Singh, A. K. Chawla, D. Kaur, R. Chandra,"Effect of oxygen partial pressure on the structural and optical properties of sputter deposited ZnO nanocrystalline thin films",Mater Lett., 61 (2007) 2050.
    [76] D. Y. Song, A. G. Aberle, J. Xia,"Optimisation of ZnO : Al films by change of sputter gas pressure for solar cell application",Appl. Surf. Sci., 195 (2002) 291.
    [77] B. N. Chapman,"Glow discharge processes : sputtering and plasma etching",Wiley, 15 (1980) p.406.
    [78] J. Zhou, D. Y. Wang, G. Z. Liu,"Effect of Li-doped concentration on the structure, optical and electrical properties of p-type ZnO thin films prepared by sol-gel method",J. Alloys Compd., 481 (2009) 802.
    [79] S. Chirakkara, S. B. Krupanidhi,"Pulsed laser deposited ZnO/ZnO:Li multilayer for blue light emitting diodes",J. Lumin., 131 (2011) 1649.
    [80] J. B. Wang, Y. J. Zhang, X. L. Zhong, Y. C. Zhou, X. L. Yuan, T. Sekiguchi,"Influence of Li-dopants on the luminescent and ferroelectric properties of ZnO thin films",Solid State Commun, 148 (2008) 448.
    [81] Y. J. Zeng, Z. Z. Ye, J. G. Lu, W. Z. Xu, L. P. Zhu, B. H. Zhao, S. Limpijumnong,"Identification of acceptor states in Li-doped p-type ZnO thin films",Appl. Phys. Lett., 89 (2006) 042106.
    [82] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, L. L. Chen, D. Y. Li, L. P. Zhu, B. H. Zhao, Y. L. Hu,"Realization of p-type ZnO films via monodoping of Li acceptor",J. Cryst. Growth, 283 (2005) 180.
    [83] A. Maldonado, A. Guillén-Santiago, M. de la L.Olvera, R. Castanedo-Pérez, G. Torres-Delgado,"The role of the fluorine concentration and substrate temperature on the electrical, optical, morphological and structural properties of chemically sprayed ZnO:F thin films",Mater Lett., 59 (2005) 1146.
    [84] N. Fujimura, T. Nishihara, S. Goto, J. F. Xu, T. Ito,"Control of Preferred Orientation for Znox Films - Control of Self-Texture",J. Cryst. Growth, 130 (1993) 269.
    [85] Y. C. Lee, S. Y. Hu, W. Water, K. K. Tiong, Z. C. Feng, Y. T. Chen, J. C. Huang, J. W. Lee, C. C. Huang, J. L. Shen, et al.,"Rapid thermal annealing effects on the structural and optical properties of ZnO films deposited on Si substrates",J. Lumin., 129 (2009) 148.
    [86] T. Nakagawa, I. Sakaguchi, K. Matsunaga, T. Yamamoto, H. Haneda, Y. Ikuhara,"Control of point defects and grain boundaries in advanced materials: Optical properties and diffusion induced by Li doping in ZnO",Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 232 (2005) 343.
    [87] K. Lark-Horovitz, V. A. Johnson,"Solid state physics",Methods of experimental physics,Academic Press, (1959) p.468.
    [88] M. Wang, E. Jung Kim, S. Hong Hahn,"Photoluminescence study of pure and Li-doped ZnO thin films grown by sol–gel technique",J. Lumin., 131 (2011) 1428.
    [89] Y. J. Zhang, J. B. Wang, X. L. Zhong, Y. C. Zhou, X. L. Yuan, T. Sekiguchi,"Influence of Li-dopants on the luminescent and ferroelectric properties of ZnO thin films",Solid State Commun., 148 (2008) 448.
    [90] S. T. L. Peng Fei Cheng, Han Chen Liu, Li Xun Song, Bin Gao, Qiu Ping Wang,"Structural and Photoluminescent Properties of Li-Doped ZnO Film Prepared by Sol-Gel Technique",Materials Science Forum, 663 - 665 (2010) 397.
    [91] Y. M. Sun, H. Z. Wang,"The electronic properties of native interstitials in ZnO",Physica B, 325 (2003) 157.
    [92] P. S. Xu, Y. M. Sun, C. S. Shi, F. Q. Xu, H. B. Pan,"Native point defect states in ZnO",Chinese Phys Lett, 18 (2001) 1252.
    [93] P. S. Xu, Y. M. Sun, C. S. Shi, F. Q. Xu, H. B. Pan,"Electronic structure of ZnO and its defects",Science in China Series a-Mathematics Physics Astronomy, 44 (2001) 1174.
    [94] D. Wang, J. Zhou, G. Liu,"Effect of Li-doped concentration on the structure, optical and electrical properties of p-type ZnO thin films prepared by sol–gel method",J. Alloys Compd., 481 (2009) 802.
    [95] G. Sankar, P. R. Sarode, C. N. R. Rao,"A Xanes Study of Mixed-Valence Transition-Metal Oxides and Rare-Earth Alloys",Chem. Phys., 76 (1983) 435.
    [96] X.-C. Liu, E.-W. Shi, Z.-Z. Chen, B.-Y. Chen, W. Huang, L.-X. Song, K.-J. Zhou, M.-Q. Cui, Z. Xie, B. He, et al.,"The local structure of Co-doped ZnO films studied by X-ray absorption spectroscopy",J. Alloys Compd., 463 (2008) 435.
    [97] Z. W. Fu, L. N. Zhang, Q. Z. Qin, Y. H. Zhang, X. K. Zeng, H. Cheng, R. B. Huang, L. S. Zheng,"An experimental and ab initio study of hypervalent LiOZn",J. Phys. Chem. A, 104 (2000) 2980.
    [98] K. F. Chiu,"In Situ Modification of RF Sputter-Deposited Lithium Nickel Oxide Thin Films by Plasma Irradiation",J. Electrochem. Soc., 151 (2004) A1865.
    [99] S. Fujihara, C. Sasaki, T. Kimura,"Effects of Li and Mg doping on microstructure and properties of sol-gel ZnO thin films",J. Eur. Ceram. Soc., 21 (2001) 2109.
    [100] M. A. Yaklin, D. A. Schneider, K. Norman, J. E. Granata, C. L. Staiger, in: Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE, 2010, pp. 002493.
    [101] J. Karamdel, C. F. Dee, B. Y. Majlis,"Characterization and aging effect study of nitrogen-doped ZnO nanofilm",Appl. Surf. Sci., 256 (2010) 6164.
    [102] P. B. Weisz,"Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis",The Journal of Chemical Physics, 21 (1953) 1531.
    [103] H. C. Chen, K. S. Lee, C. C. Lee,"Annealing dependence of residual stress and optical properties of TiO2 thin film deposited by different deposition methods",Appl. Optics, 47 (2008) C284.
    [104] B. Joseph, P. K. Manoj, V. K. Vaidyan,"Studies on the structural, electrical and optical properties of Al-doped ZnO thin films prepared by chemical spray deposition",Ceram. Int., 32 (2006) 487.
    [105] Z. Q. Chen, S. Yamamoto, M. Maekawa, A. Kawasuso, X. L. Yuan, T. Sekiguchi,"Postgrowth annealing of defects in ZnO studied by positron annihilation, x-ray diffraction, Rutherford backscattering, cathodoluminescence, and Hall measurements",J. Appl. Phys., 94 (2003) 4807.
    [106] X. Q. Wei, B. Y. Man, M. Liu, C. S. Xue, H. Z. Zhuang, C. Yang,"Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2",Physica B: Condensed Matter, 388 (2007) 145.
    [107] J. Wang, G. T. Du, Y. T. Zhang, B. J. Zhao, X. T. Yang, D. L. Liu,"Luminescence properties of ZnO films annealed in growth ambient and oxygen",J. Cryst. Growth, 263 (2004) 269.
    [108] S. Mridha, M. Dutta, D. Basak,"Photoresponse of n-ZnO/p-Si heterojunction towards ultraviolet/visible lights: thickness dependent behavior",J. Mater Sci-Mater. El., 20 (2009) 376.
    [109] I. M. Chan, F. C. Hong,"Improved performance of the single-layer and double-layer organic light emitting diodes by nickel oxide coated indium tin oxide anode",Thin Solid Films, 450 (2004) 304.
    [110] H. Ohta, M. Kamiya, T. Kamaiya, M. Hirano, H. Hosono,"UV-detector based on pn-heteroj unction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO",Thin Solid Films, 445 (2003) 317.
    [111] Y. Pellegrin, L. Le Pleux, E. Blart, A. Renaud, B. Chavillon, N. Szuwarski, M. Boujtita, L. Cario, S. Jobic, D. Jacquemin, et al.,"Ruthenium polypyridine complexes as sensitizers in NiO based p-type dye-sensitized solar cells: Effects of the anchoring groups",J.Photoch.Photobio. A, 219 (2011) 235.
    [112] J. Bandara, H. Weerasinghe,"Solid-state dye-sensitized solar cell with p-type NiO as a hole collector",Sol. Energ. Mat. Sol. Cell, 85 (2005) 385.
    [113] N. G. Cho, I. S. Hwang, H. G. Kim, J. H. Lee, I. D. Kim,"Gas sensing properties of p-type hollow NiO hemispheres prepared by polymeric colloidal templating method",Sensor Actuat B-Chem, 155 (2011) 366.
    [114] L. Ai, G. J. Fang, L. G. Yuan, N. S. Liu, M. J. Wang, C. Li, Q. L. Zhang, J. Li, X. Z. Zhao,"Influence of substrate temperature on electrical and optical properties of p-type semitransparent conductive nickel oxide thin films deposited by radio frequency sputtering",Appl. Surf. Sci., 254 (2008) 2401.
    [115] H. W. Ryu, G. P. Choi, G. J. Hong, J. S. Park,"Growth and surface morphology of textured NiO thin films deposited by off-axis RF magnetron sputtering",Jpn. J. Appl. Phys., Part 1, 43 (2004) 5524.
    [116] H. W. Ryu, G. P. Choi, W. S. Lee, J. S. Park,"Preferred orientations of NiO thin films prepared by RF magnetron sputtering",J. Mater. Sci., 39 (2004) 4375.
    [117] Z. a. Jarz ebski,"Oxide semiconductors",International series of monographs in the science of the solid state, v 4,Pergamon Press, (1973) p.285.
    [118] A. P. Roth, J. B. Webb, D. F. Williams,"Absorption-Edge Shift in Zno Thin-Films at High Carrier Densities",Solid State Commun., 39 (1981) 1269.
    [119] E. Burstein,"The Anomalous Optical Absorption Limit in Insb",Phys. Rev., 94 (1954) 1431.
    [120] T. S. Moss,"The Interpretation of the Properties of Indium Antimonide",P. Phys. Soc. Lond. B, 67 (1954) 775.
    [121] H. L. Chen, Y. M. Lu, W. S. Hwang,"Characterization of sputtered NiO thin films",Surf. Coat. Tech., 198 (2005) 138.
    [122] P. M. Oliver, S. C. Parker, W. C. Mackrodt,"Computer-Simulation of the Crystal Morphology of Nio",Model. Simul. Mater. Sc., 1 (1993) 755.
    [123] P. W. Tasker,"The stability of ionic crystal surfaces",Journal of Physics C: Solid State Physics, 12 (1979) 4977.
    [124] H. K. Kim, T. Y. Seong, K. K. Kim, S. J. Park, Y. S. Yoon, I. Adesida,"Mechanism of nonalloyed Al ohmic contacts to n-type ZnO : Al epitaxial layer",Jpn. J. Appl. Phys., Part 1, 43 (2004) 976.
    [125] H.-K. Kim, K.-K. Kim, S.-J. Park, T.-Y. Seong, I. Adesida,"Formation of low resistance nonalloyed Al/Pt ohmic contacts on n-type ZnO epitaxial layer",J. Appl. Phys., 94 (2003) 4225.
    [126] H. K. Kim, S. W. Kim, B. Y. Yang, S. H. Kim, K. H. Lee, S. H. Ji, Y. S. Yoon,"Electrical and interfacial properties of nonalloyed Ti/Au ohmic and Pt Schottky contacts on Zn-terminated ZnO", Jpn. J. Appl. Phys. 45 (2006) 1560.
    [127] S. R. Lee, H. M. Kim, K. Char, J. H. Jang, M. Kim, M. R. Cho, Y. D. Park, R. Jung, D. C. Kim, S. Seo,"Role of oxygen vacancies formed between top electrodes and epitaxial NiO films in bipolar resistance switching",Curr. Appl. Phys., 12 (2012) 369.
    [128] S. Seo, M. J. Lee, D. C. Kim, S. E. Ahn, B. H. Park, Y. S. Kim, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, et al.,"Electrode dependence of resistance switching in polycrystalline NiO films",Appl. Phys. Lett., 87 (2005) 263507.
    [129] R. K. Gupta, K. Ghosh, P. K. Kahol,"Fabrication and characterization of NiO/ZnO p–n junctions by pulsed laser deposition",Physica E: Low-dimensional Systems and Nanostructures, 41 (2009) 617.
    [130] Y. W. Heo, Y. W. Kwon, Y. Li, S. J. Pearton, D. P. Norton,"p-type behavior in phosphorus-doped (Zn,Mg)O device structures",Appl. Phys. Lett., 84 (2004) 3474.
    [131] R. McClintock, A. Yasan, K. Mayes, D. Shiell, S. R. Darvish, P. Kung, M. Razeghi,"High quantum efficiency AlGaN solar-blind p-i-n photodiodes",Appl. Phys. Lett., 84 (2004) 1248.
    [132] P. Perlin, M. Osinski, P. G. Eliseev, V. A. Smagley, J. Mu, M. Banas, P. Sartori,"Low-temperature study of current and electroluminescence in InGaN/AlGaN/GaN double-heterostructure blue light-emitting diodes",Appl. Phys. Lett., 69 (1996) 1680.
    [133] J. H. C. Casey, J. Muth, S. Krishnankutty, J. M. Zavada,"Dominance of tunneling current and band filling in InGaN/AlGaN double heterostructure blue light-emitting diodes",Appl. Phys. Lett., 68 (1996) 2867.
    [134] H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, M. Murakami,"Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces",J. Appl. Phys., 81 (1997) 1315.
    [135] J. L. Lee, J. K. Kim, J. W. Lee, Y. J. Park, T. Kim,"Effect of surface treatment by KOH solution on ohmic contact formation of p-type GaN",Solid State Electron, 43 (1999) 435.
    [136] J. M. Bian, X. M. Li, C. Y. Zhang, W. D. Yu, X. D. Gao,"p-type ZnO films by monodoping of nitrogen and ZnO-based p-n homojunctions",Appl. Phys. Lett., 85 (2004) 4070.

    無法下載圖示 校內:2022-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE