| 研究生: |
靳元良 Chin, Yuan-Liang |
|---|---|
| 論文名稱: |
以MOCVD配合流體床技術製備碳化鉻/氧化鋁奈米複合陶瓷之研究 Investigation of Chromium Carbide/Alumina Nanocomposites Prepared by MOCVD in Fluidized Bed |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 高能量振動式球磨 、流體床 、殘留應力 、奈米複合陶瓷 、熱壓燒結 、有機金屬化學氣相沈積法 |
| 外文關鍵詞: | MOCVD, ceramic nanocomposite, fluidized bed, hot-press sintering, residual stress., high energy vibration ball milling |
| 相關次數: | 點閱:107 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用有機金屬化學氣相沈積法(MOCVD)配合流體床(Fluidized Bed)技術,製備Cr2O3/Al2O3奈米複合粉體,配合高能量振動式球磨混合分散,在真空環境中以1500℃進行碳化與熱壓燒結,成功製備出高緻密性之碳化鉻/氧化鋁奈米複合陶瓷。並探討奈米複合陶瓷的相,微結構以及機械性質。
實驗結果發現,在流體化溫度為400℃下製備之奈米複合粉體,除了氧化鋁外,其主相為一非晶質的氧化鉻,另外,粉體中有自由基碳及介穩態之CrC1-x的存在,對日後燒結時與氧化鉻結合,相轉換為碳化鉻(Cr3C2)有很大的影響。而經由高能量振動式球磨後,複合粉體的分散性及均勻性獲得大幅的改善。
於真空熱壓燒結合成之Cr3C2/Al2O3奈米複合陶瓷的強度、硬度、韌性均較單質氧化鋁提升許多。微結構顯示大部分微量之奈米碳化鉻分佈在氧化鋁晶界上以及晶粒內,因而產生了強、韌化的效果。在奈米複合陶瓷的強化方面,由於奈米級第二相的引入以及鉻離子固溶到氧化鋁基地的現象產生細晶強化與固溶強化,且使得氧化鋁破壞由沿晶轉為沿晶穿晶混和的模式,其強度約可提升至475MPa;韌化方面則觀察出裂縫轉折、裂縫架橋、裂縫分支等韌化機制,其韌性約可提升至5.6MPa‧m1/2。
以X光測量碳化鉻/氧化鋁奈米複合陶瓷中之殘留應力,發現在添加2.2vol.%第二相之複合陶瓷中,其殘留壓應力值為-104MPa;而添加5vol.%第二相之複合陶瓷中,其殘留壓應力值為-125MPa。由於殘留壓應力的存在,藉以強化奈米複合陶瓷。
This study using metal-organic chemical vapor deposition (MOCVD) conducted in the fluidized bed was employed for the preparation of nano-meter as-deposited powder. After high energy vibration ball milling, the composite powder was sintered by hot-press sintering at 1500℃ in vacuum and obtained the fully-densed Cr3C2/Al2O3 ceramic nanocomposites. the phases, microstructures and mechanical properties of nanocomposites were also discussed in this study.
During the as-deposited powder preparation, The amorphous Cr2O3 deposited on the Al2O3 ceramic powder by pyrolysis of Chromium Carbonyl (Cr(CO)6) at 400℃ was used. Besides, there were also free carbon and metastable CrC1-x inside the Al2O3 and those species were helpful during the phase transformation from Cr2O3 to Cr3C2. After the high energy vibration ball milling process, we can obtain the dispersive and uniform composite powder.
The hot-pressed Cr3C2/Al2O3 nanocomposites have better mechanical performances such as bending strength, fracture toughness and hardness than the monolithic Al2O3. The nano-sized Cr3C2 particles were mainly located within the Al2O3 grains as well as on the Al2O3 grain boundaries. The drastic change of the fracture mode from intergranular fracture of monolithic Al2O3 to transgranular fracture of nanocomposites, solid solution strengthening and grain size reduction improved the strength of Al2O3. The toughening mechanisms of the nanocomposites were crack deflection, bridging and branching.
Moreover, we measured the residual stresses in the Cr3C2/Al2O3 nanocomposites by X-ray. The results indicated that the highly localized residual stresses in the matrix grains were generated by the mismatch of thermal expansion coefficients between the matrix and the dispersed particles. These residual compressive stresses also improved the strength and toughness in the nanocomposites.
1. 黃啟祥、林江財,陶瓷技術手冊(下),經濟部技術處,1994.
2. W. H. Tuan and R. J. Brook, “The Toughness of Alumina with Nickel Inclusions,” J. Euro. Ceram. Soc., 6, 31 (1990)
3. K. Niihara, “New Design Concept of Structural Ceramics-Ceramic Nanocomposite.” J. Ceram. Soc. Jpn., 99 [10] 974-82 (1991).
4. M. Nawa, T. Sekino, and K. Niihara, “Microstructure and Mechanical Properties of Al2O3-Mo Nanocomposites,” J. Jpn. Soc. of Powd. and Powd. Metal., 39, 1104-1108 (1992)
5. A. Nakahira and K.Niihara, “Sintering Behavior and Consolidation Process for Al2O3/SiC Nanocomposites,” J. Ceram. Soc. Jpn., 100 [4] 448-453 (1992)
6. C. T. Fu and J. M Wu, “Microstructure and mechanical Properties of Cr3C2 Particulate Reinforced Al2O3 Matrix Composites,” J. Mater. Sci., 29 [10-13] 2617-2677 (1994)
7. A. Nakahira, K. Niihara, J. Ohkijima, and T. Hirai, “The Al2O3/Si3N4 Nano-Composites,” J. Jpn. Soc. of Powd. and Powd. Metal., 36, 239-242 (1989)
8. S. Inoue, T. Uchiyama, and K. Niihara, “Al2O3/SiC whisker/ZrO2 Ceramics Composite,” J. Jpn. Soc. of Powd. Metal., 37, 341 (1990)
9. C. T. Fu, A. K. Li, and J. M. Wu, “Effects of Oxidation of Cr3C2 Particlate Reinforced Al2O3 Matrix Composites on Microstructure and Mechanical Structure Properties,” J. Mater. Sci., 28 [23-24] 6285-6294 (1993)
10. K. M. Shu, C. T. Fu, and J. M. Liu, “Electrodicharge-Machining of Al2O3/Cr3C2 Composites,” J. Mater. Sci. Letter, 13 [13-18] 1146-1148 (1994)
11. C. T. Fu, A. K. Li, and J. M. Wu, “Effects of Post-Sinter Hot Isostatic pressing Processes on Microstructure and Mechanical Properties of Al2O3-Cr3C2 Composites,” Bri. Cerm. Trans., 93 [5] 178-182 (1994)
12. 涂國基,常壓燒結Al2O3/Cr3C2複合材料機械性質和微結構之探討, 國立成功大學材料科學及工程學系碩士論文,1994
13. 黃俊傑,Cr3C2/Al2O3射出成型技術之開發及性質研究,國立成功大學材料科學及工程學系碩士論文,1995
14. R. C. Bradt, “Cr2O3 solid solution hardening of Al2O3,” J. Am. Ceram. Soc., 50 (1) 54-55, 1967.
15. B. B. Chate, W. C. Smith, C. H. Kim, D. P. H. Hasselman and G. E. Kane, “Effect of Chromia Alloying on Machining Performance of Alumina Ceramic Cutting Tools,” Ceramic Bulletin, 54, 2, 210-215 (1975)
16. T. J. Davies, H. G. Emblem, A. Harabi, C. S. Nwobodo, A. A. Oqwu, and V. Tsantzlaou, “Characterisation and properties of alumina-chrome refratories,” Br. Ceram. Trans, 91, 71-76, 1992
17. A. Harabi and T. J. Davies, “Mechanical properties of sintered alumina-chromia refractories,” Br. Ceram. Trans, 94 (2) 79-84, 1995.
18. R. W. Rice, “Toughening in Ceramics Particulate and Whisker Composites, ” Ceram. Eng. Sci. Proc., 11 [7-8] 667-694 (1990)
19. K. T. Faber and A. G. Evans, “Crack Deflection Process-I. Theory,” Acta Metall., 31 [4] 565-79 (1983)
20. G. Wei and P. Becher, “Improvement in Mechanical in SiC by the Addition of TiC Particulate,” J. Am. Ceram. Soc., 67 [8] 571-91 (1984)
21. T. Ohji, T. Hiranom, A.Nakahira, and K.Niihara, “Particle/Matrix Interface and Its Role in Creep Inhibition Of Alumina/Silicon Carbide Nanocomposites,” J. Am. Ceram. Soc., 79 [1] 33-45 (1996)
22. K. T. Faber and A. G. Evans, “Crack Deflection Process-I. Theory,” Acta Metall., 31 [4] 565-576 (1983)
23. W. Clegg, “New way to Make Tough Ceramics,” Interceram., 40 [6] (1991)
24. N. J. Petch, “Cleavage Strength of Polycrystals,” J. Iron and Steel Inst.(London), 174 [1] 25-28 (1953)
25. C. Zener, “Grains, Phases, and Interfaces: An Interpretation of Microstructure,” Trans. Am. Inst. Min. Metall. Eng., 175, 15-51 (1948)
26. T. Ohji, Y. Jeong, and K. Niihara, “Strengthening and Toughening Mechanisms of Ceramic Nanocomposites,” J. Am. Ceram. Soc., 81 (6) 1453-1460 (1998)
27. T. Iizuka and T. Murao, “Microstructures and Properties of Mo5Si2-Particle-Reinforced Si3N4-Matrix Composites,” J. Am. Ceram. Soc., 85 {4} 954-60 (2002).
28. 王世敏、許祖勛、傅晶,納米材料製備技術,化學工業出版社,北京(2001)
29. 金宗哲,新型陶瓷材料手冊,江蘇科學技術出版社(1995)
30. B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., Ch. 16, Reading, MA, Addison-Wesley, (1978)
31. I. C. Noyan and J. B. Cohen, Residual Stress, Measurement by Diffraction and Interpretation, Springer-Verlag, NY (1987)
32. 吳翼貽,以X光繞射量測殘留應力,科儀新知,13 [6] 23-34 (1992)
33. 黃炳淮,以X光繞射量測殘留應力,科儀新知,22 [2] 23-30 (1992)
34. J. Luo and R. Stevens, “The Role of Residual Stress on the Mechanical Properties of Al2O3-5 vol% SiC Nanocomposites,” J. Euro. Ceram. Soc., 17, 1565-1572 (1997)
35. 林慶章,利用MOCVD及燒結製程製備奈米鉬/氧化鋁複合材料及其微結構發展,國立台灣大學材料科學及工程學研究所,(2000)
36. H. Itoh, K. Hattori, and S. Naka, “Rotary Powder Bed Chemical Vapor Deposition of Titanium Nitride on Spherical Iron Powder,” J. Mater. Sci., 24, 3643-3646 (1989)
37. S. Morooka, “Electroconductivity of Sintered Bodies of α-Al2O3-TiN Composites Prepared by CVD Reaction in a Fluidized Bed,” J. Mater. Sci., 28, 3168-72 (1993)
38. W. -C. J. Wei and M. H. Lo, ”Processing and Properties of (Mo, Cr)Oxycarbides from MOCVD,” Appl. Organometal. Chem., 12, 201-220 (1998)
39. 羅名宏,鉻、鉬羰化物的披覆製程與鍍層性質性質研究,國立台灣大學材料科學及工程學研究所(1996)
40. M. H. Lo and W. -C. J. Wei, “Processing and Properties of (Cr,Mo) Oxycarbides from MOCVD,” Appl. Oragnometal Chem., 12, 1-20 (1998)
41. W. Hieber, E. Romberg, and Z. Anorg, Allg. Chem., 221, 332 (1935).
42. J. J. Lander and L. H. Germer, “Plating Molybdenum,Tungsten, and Chromium by Thermal Decomposition of Their Carbonyls,”American Institute of Mining and Metallurgical Rnginerrs,” Eng. Tech. Pub., 2295 (1947)
43. M. H. Lo and W.C. J. Wei, “Analysis of (Cr,Mo) Oxycarbide Film Grown on Stainless Steel via Metallooragnic Chemical Vapor Deposition,” J. Am. Ceram. Soc., 80 [4] 886-892 (1997)
44. 陳志榮,納米碳化鉻/及鉬/氧化鋁基複合材料之製程與分析,國立台灣大學材料科學及工程學研究所(2000)
45. 狩野 武,粉粒體輸送裝置,日刊工業新聞社,民國65年
46. J. R. Lindgren and W. R. Johnson, Surf. Coat. Technol. 32, 240 (1987)
47. M. Fuoukawa, T. kitada, and O. Nakano, Nippon Tungsten Rev. 20, 18 (1987).
48. The Editiorial Staff Reference Publications ASM International, ASM Engineered Materials Reference Book.
49. P. K. Rajagopalan, T. S. Krishnan, and D. K. Bose, “Development of Carbothermy for the Preparation of Hepta Chromium Carbide,” Journal of Alloys and Compounds 297 L1-L4 (2000)
50. T. J. Davis, H. G. Emblem, S. Nwobodo, A. A. Ogwu, and V. Tasantzalou, J. Mater. Sci., 26, 1061, 1991
51. 彭康泰,以有機金屬化學氣相沈積技術及燒結製程製備奈米級矽化鉬/氮化矽複合陶瓷之研究,國立成功大學材料科學及工程學研究所 (2002)
52. F. Maury, D. Oquab, J. C. Manse and R. Morancho,“Structural Characterization of Chromium Carbide Coatings Deposited at Low Temperature by Low Pressure Chemical Vapor Decomposition Using Dicumene Chromium,” Surface and Coatings Technology, 41, 51-61 (1990)
53. H. T. Lin, J. L. Huang, W. T. Lo, W. C. J. Wei, “Investigation on Carbonizing Behaviors of Nanometer-sized Cr2O3 Particles Dispersed on Alumina Particles by MOCVD in fluidized Bed,” J. Mater. Res. (in press)
54. J. E. Knap, B. Pesetsky, and F. N. Hill, Plating, 53, 772 (1966)
55. F. Schuster and F. Maury “Influence of Organochrium Precursor Chemistry on The Microstructure of MOCVD Chrimium Carbide Coatings,” Surface and Coating Technology, 43/44, 185-198 (1990)
56. T. Ivanova, M. Surtchev, K. Gesheva, “Investigation of CVD Molybdenum Oxide Films,” Mater. Letters, 53, 250-257 (2002)
57. 莊達人,VLSI製造技術,高立圖書有限公司(1995)。
58. 黃惟聖,以有機金屬化學氣相沈積技術及熱壓製程製備奈米級碳化鉻/氧化鋁複合陶瓷之研究,國立成功大學材料科學及工程學研究所 (2003)
59. L. Carroll, M. Sternitzke, and B. Derby, “Silicon Carbide Particle Size Effects in Alumina-based Nanocomposites,” Acta Mater. 44 [11] 4543-4552, 1996
60. H. Z. Wang, L. Gao, L. H. Gui, and J. K. Guo,”Preparation and Properties of Intragranular Al2O3-SiC Nanocomposites,” Nanostructured Materials, 10 [6] 947-953, 1998
61. M. T. Hernandez, M. González, A. De Pablos, “C-diffusion During Hot Press in Al2O3-Cr2O3 system,” Acta Matrialia 51, 217-228 (2003)
62. W. D. Kingery, H. K. Bowen, D. R. Uhimann, Introduction to Ceramics 2nd ED., J. Wiley & Sons, (1976)
63. G. Gazza, “Prerssure Densification,” 296-303, in Engineered Materials Handbook, Vol.4, Ceramics and Glasses, S. J. Schneider, Jr., (Volume Chairman), ASM International, (1991)
64. L. C. De Jonghe, M. N. Rahaman, and C. H. Huseh, “Transient Stresses in Bimodal Compacts During Sintering,” Acta Matell., 34 [7] 1467-71 (1986)
65. C. H. Huseh, “Sintering behavior of Powder Compacts with Multiheterogeneities,” J. Mater. Sci., 21, 2067-2072 (1986)
66. J. Liu and P. Darrell Ownby, “Boron Carbide Reinforced Alumina Composites,” J. Am. Ceram. Soc., 74 [3] 674-677 (1991)
67. G. Pezzotti, W. H. Muller, “Strengthening Mechanisms in Al2O3/SiC Nanocomposites,” Computational Materials Science 22, 155-168 (2001)
68. C. J. Lin, C. C. Yang and W. C. J. Wei, “Processing and Micristructure of Nano-Mo/Al2O3 Composites from MOCVD and Fluidized Bed,” Nanostructured Materials, 11 [8] 1361-1377, 1999
69. D. F. Lii, J. L. Huang, J. J. Huang, and H. H. Lu, “The Interfacial Reaction in Cr3C2/Al2O3 Composites,” J. Mater. Res., 14 [3] 1999
70. 陳力俊,材料電子顯微鏡學,國科會精儀中心,民國83年
71. S.-M. Choi and H. Awaji, “Nanocomposites-A New Material Design Concept,” Science and Technology of Advanced Materials 6, 2-10 (2005)
72. P. Pokorny and A. Ibarra, J. Phys: Condens. Matter, 5:7387, 1993
73. S. Patu and R. J. Arsenault, “Strengthening due to Non-random Solid Solutions,” Mater. Sci. & Eng. A, 194, 121-128 (1995)
74. C. C. Anya, “Microstructural Nature of Strengthening and Toughening in Al2O3-SiC(p) Nanocomposites,” J. Mater. Sci., 34, 5557-5567 (1999)
75. Y. Jordan, J. Dubois, C. Brodhag, and Philipponneau, “Sintering of Non-Oxide/Zicornia/Alumina Composites,” Advance Structural Inorganic Composites, Elsevier Science Publishers B. V., 599-608 (1991)
76. C. L. Chen and W.-C. J. Wei, “Sintering Behavior and Mechanical Properties of Nano-sized Cr3C2/Al2O3 Composites Prepared by MOCVI process,” J. Euro. Ceram. Soc. 22, 2883-2892 (2002)
77. H. Tan and W. Yang, “Toughening Mechanisms of Nano-composite Ceramics,” Mechanics of Materials 30 111-123 (1998)
78. M. Sternitzke, “Review: Structural Ceramic Nanocomposites,” J. Euro. Ceram. Soc. 17 1061-1082 (1997)
79. H. Awaji, S. –M. Choi, and E. Yagi, “Mechanisms of Toughening and Strengthening in Ceramic-based Nanocomposites,” Mechanics of Materials 34 411-422 (2002)
80. J. Selsing, “Internal Stress in Ceramics,” J. Am. Ceram. Soc., 44 [8] 419 (1961)
81. D. -H. Riu, Y. –M. Kong, and H. –E. Kim, “Effect of Cr2O3 Addition on Microstructural Evolution and Mechanical Properties of Al2O3,” J. European Ceram. Soc.,20, 1475-1481 (2000)
82. J. Soroka and J. Sereda, “Interrelation of Hardness, Modulus of elasticity and Porosity in Various Gypsum Systems,” J. Am. Ceram. Soc., 5 [6] 337 (1968)
83. K. K. Tojek and D. J. Green, “Effect of Residual Stress on the Strength Distribution of Brittle Materials,” J. Am. Ceram. Soc., 72, 1885-1890 (1989)