| 研究生: |
鄭宇舜 Cheng, Yu-Shun |
|---|---|
| 論文名稱: |
具微奈米結構之反置型有機太陽能電池特性研究 Fabrication and Characterization of Inverted Type Organic Solar Cells with Nano-structure |
| 指導教授: |
高騏
Gau, Chie |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 有機太陽能電池 、反置型 、微奈米結構 |
| 外文關鍵詞: | Organic solar cells, Inverted type, nano structure |
| 相關次數: | 點閱:111 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究著重於溶液旋塗成膜的製程方式,利用最簡易的製程來降低成本,製作出高效率的反置型(Inverted)有機太陽能電池元件,並針對各薄膜分別製作微奈米結構,其中以下幾個方向做探討:
1. 於反置型有機太陽能電池中的電子傳輸層ZnO做探討,由於ZnO薄膜是採用sol-gel的方式來成膜,針對成膜後的ZnO做進一步的SEM、EDS、XRD、XPS等等分析,於反置型有機太陽能電池完成後測試光電轉換效率(PCE)及lifetime,最終反置型有機太陽能電池的效率約為2.58%;可相同於一般型(normal)的有機太陽能電池,而lifetime可由一般型元件的半天提升至反置型的一個月以上。
2.針對電子傳輸層ZnO及有機主動層(active layer)製作微奈米結構,希望藉由微奈米結構增加電子傳輸層與主動層的接觸面積來提升填充因子(FF),並藉由光進入微奈米結構使光反射下降,進而提升短路電流密度(Jsc),使光電轉換效率(PCE)提升,最終量測效率可由2.46%提升至3.0%。
3.不同於以往的異質接面bulk heterojunction (BHJ)的掺混(blend)主動層方式來製作有機太陽能電池,此研究是利用類似雙層(bilayer)主動層的概念來製作,先成膜施體(Donor)後再成膜授體(Acceptor),由於施體(Donor)與授體(Acceptor)之間親疏水性的現象讓授體PCBM可於施體P3HT上面形成微結構,利用更多的微結構讓施體與授體產生更多的接面(interface),其優點可增加充填因子(FF)及電流密度(Jsc),讓最終的光電轉換效率(PCE)提升,光電轉效率可由2.80%提升至4.38%。此方式來成膜有機主動層的方式我們稱之為平面異質接面(surface heterojunction)有機太陽能電池。
4.針對電洞傳輸層PEDOT:PSS薄膜製作微奈米結構,探討壓印電洞傳輸層PEDOT:PSS對於光電轉換效率中的電流密度(Jsc)及充填因子(FF)的影響,量測後發現壓印電洞傳輸層PEDOT:PSS的效益並沒有壓印電子傳輸層ZnO來的明顯,可些微提升填充因子(FF),所以在此部份結合壓印電子傳輸層ZnO及電洞傳輸層PEDOT:PSS,達到具雙層微結構的有機太陽能電池元件製作,探討其光電特性,最終光電轉換效率可由2.60%提升至3.25%。
5.本研究目標以全溶液製程來製作有機太陽能電池,所以導入高導電高分子溶液PH1000來取代熱蒸鍍(thermal coater)的銀電極,探討PH1000光學及電子特性,並跟蒸鍍的銀電極做相互比較,最終光電轉換效率因電流密度的下降讓最終效率為1.55%。
6. 全溶液製程有機太陽能電池元件完成後,進一步於高導電高分子PH1000外面設置一層光學膜,其中利用液晶顯示器(LCD)內的增亮膜(Brightness Enhancement Film,BEF)微結構來當母模,壓印後於光學膜上製作出具有菱鏡(prism)微結構之光學膜,期望光線射入光學膜後產生折射,讓整體元件的光路徑能夠增加,使光吸收更多,使太陽能電池元件的電流密度(Jsc)提升,最終溶液型電極之有機太陽能電池加上光學膜後效率可由1.55%提升到1.90%。
The aim of this study is to fabricate high-efficient inverted-type organic solar cells (OSCs) using the solution-based spin-coating method, which is a simple and cost-saving method to coat each layer in the OSC. The strategy to increase the power conversion efficiency (PCE) is to build structures in micro- or nanometer scale on the layers of the OSC. The overall experiment will be discussed as follows:
1. The ZnO film is served as the electron transport layer in the inverted-type OSC. The ZnO film was produced with the sol-gel method followed by annealing, and further characterized with SEM, EDS, XRD, and XPS. Finally, the PCE and lifetimes of the OSCs with the inverted type and the normal type were compared. The PCE of the inverted-type OSC reached 2.58%, which is comparable to that of the normal-type OSC. The lifetime of the inverted-type OSC was prolonged to over a month while the normal structure OSC only maintained for half-day.
2. The nanostructure was imprinted on the ZnO layer and the active layer in OSC to enhance the fill factor (FF) by increasing the contact area between the two layers. The incident light would be scattered by the nanostructure, which increases the light trapping ability and the short-circuit current density (Jsc). The resulting PCE increased from 2.46% to 3.0%.
3. Unlike the bulk-heterojunction (BHJ) structure used to fabricate the blended active layer, the active layer of the designed OSCs was built into a bilayer-like structure. The donor layer (P3HT) was coated followed by the acceptor layer (PCBM). The difference of the hydrophilicity between the two materials resulted in forming a PCBM nanostructure on the P3HT layer and creating more donor/acceptor interfaces, which is so called the “surface heterojunction”OSC. The FF and Jsc of the designed OSC were increased, and the PCE was improved from 2.80% to 4.38%.
4. A nanostructure was also imprinted on the hole transport layer (PEDOT: PSS) to study the influence of the FF and Jsc. However, the improvement of the FF and Jsc was not as apparent as that of the nanostructure imprinted on the ZnO layer. Therefore, both the PEDOT: PSS and the ZnO layer were imprinted with nanostructures and the final PCE increased from 2.60% to 3.25%.
5. The thermally evaporated Ag electrode was also replaced with the high conductive polymer solution, PH1000, to achieve all-solution procedure for fabricating OSCs. The optical and electrical properties of the PH1000 were investigated and compared with the Ag electrode. The PCE of the resulting OSC reached 1.55% owing to the decreasing Jsc.
6. An optical film, which duplicated the prism structure of a brightness enhancement film (BEF) in the LCD, was added in the all-solution-processed OSC to reflect the incident light and increase the light path in the active layer. The Jsc was increased and the PCE of the all-solution-processed OSC also increased from 1.55% to 1.90% after adding the optical film.
[1]D. M. Chapin, "A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power," J. Appl. Phys., 25, 676 (1954)
[2]K. Emery, W. Warta, M. A. Green,Y. Hishikawa, "Solar Cell Efficiency Tables (Version 33)," Prog. Photovolt: Res. Appl., 7, 85 (2009)
[3]C. R. Wronski, D. E. Carlson, "Amorphous silicon solar cell," Appl. Phys. Lett., 28, 671 (1976)
[4]K. riprapa, P. Sichanugrist, "High efficiency amorphous/microcrystalline silicon solar cell fabricated on metal substrate," Photovoltaic Energy Conversion 2003. Proceedings of 3rd World Conference on Volume3, 2799 (2003)
[5]J. Hiltner, B. Egaas, K. Ramanathan, M. A. Contreras, A. Swartzlander, F. Hason, R. Noufi, "Properties of 19.2% efficiency ZnO/CdS/Ce2 thin-film solar cells," Prog. Photovolt.:Res. 7, 311 (1999)
[6]B. O'Regan, M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2," Nature, 353, 737-740 (1991)
[7]D. Kearns, M. Calvin, "Photovoltaic effect and photoconductivity in laminated organic systems," J. Chem. Phys., 29, 950-951 (1958)
[8]C. W. Tang, "Two-layer organic photovoltaic cell," Appl. Phy. Lett., 48, 183-185 (1986)
[9]P. Peumans, S. R. Forrest, "Very-high-efficiency double-heterostructure opper phthalocyanine/C60 photovoltaic cells," Appl. Phys. Lett., 79, 126-128 (2001)
[10]K. Matsumura, H. Ohigashi, A. Takahashi, J. Tsukamoto, "A Schottky-barrier type solar-cell using polyacetylene," Jpn. J. Appl. Phys., 20, L127-L129 (1981)
[11]S. C. O'Brien, R. E. Curl, H. W. Kroto, R. E. Smalley, J. R. Heath, "C60-buckminsterfulleren," Nature, 318, 162-163 (1985)
[12]A.J. Heeger, K. Pakbaz, G. Yu, "Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity," Appl. Phys. Lett., 64, 3422-3424 (1994)
[13]A. J. Heeger, J. Gao, J. Hummelen, G. Yu, F. Wudl, "Polymer hotovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science, 270, 1789-1791 (1995)
[14]C. Waldauf, P. Schilinsky, C. J. Brabec, "Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors," Appl. Phys. Lett., 81, 3885-3887 (2002)
[15]R. S. Rittberger, F. Padinger, N. S. Sariciftci, "Effects of postproduction treatment on plastic solar cells," Adv. Funct. Mater., 13, 85-88 (2003)
[16]K. Kim, J. Liu, M. A. Namboothiry, D. L. Carroll, "Role of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photocoltaic," Appl. Phys. Lett., 90, 163511 (2007)
[17]M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, "Design Rules for Donors in Bulk-Heterojunction SolarCells—Towards 10% Energy-Conversion Efficiency," Advanced Materials., 18, 789-794 (2006)
[18]R. Gaudiana, C. J. Brabec, "Organic materials : fantastic plastic," Nat. Photonics, 2, 287-289 (2008)
[19]J. M. Nunz, “Organic photovoltaic materials and devices,” Physique Volume 3, Issue 4, 523–542 (2002)
[20]A. L. Ayzner, “Reappraising the Need for Bulk Heterojunctions in Polymer-Fullerene Photovoltaics: The Role of Carrier Transport in All-Solution-Processed P3HT/PCBM Bilayer Solar Cells,” J. Phys. Chem. C, 113, 20050-20060 (2009)
[21]K. H. Lee, “Morphology of All-Solution-Processed “Bilayer” Organic Solar Cells,” Adv. Mater., 23, 766–770 (2011)
[22]N. D. Treat, “Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend,” Adv. Energy Mater., 1, 82–89 (2011)
[23]D. Chen, “Bulk Heterojunction Photovoltaic Active Layers via Bilayer Interdiffusion,” Nano Lett., 11, 2071-2078 (2011)
[24]H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, "Two-dimensional charge transport in self-organized, high-mobility conjugated polymers," Nature, 401, 685 (1999)
[25]J. C. Hummelen, B. W. Knight, F. Lepeq, F. Wudl, J. Yao, C. L. Wilkins, "Preparation and Characterization of Fulleroid and Methanofullerene Derivatives," J. Org. Chem., 60, 532 (1995)
[26]T. Kietzke, "Recent Advances in Organic Solar Cells," Advances in OptoElectronics, Volume 2007, 40285 (2007)
[27]S. R. Forrest, "The Limits to Organic Solars cells," Mrs. Bull., 30, 28 (2005)
[28]A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldman, U. Scherf, E Harth, A. Gugel, K. Mullen, "Exciton diffusion and dissociation in coniugated polymer/fullerene blends and heterstructures," Phys. Rev., B59, 15346 (1999)
[29]Y. Liang, Z. Xu, J. Xia, S. T. Y. Wu, G. Li, C. Ray, L. Yu, "For the Bright Future-Bulk Heteroiunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%," Adv. Funct. Mater., 22, E135-138 (2010)
[30]H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, "Polymer Solar Cells with Enhanced Open-Circuit Voltage and Efficiency," Nature Photonics, 3, 649-653 (2009)
[31]K. S. Nalwa, J. M. Park, K. M. Ho, S. Chaudary, "On realizing higher efficiency polymer solar cells using a textured substrate platform," Adv. Mater., 23, 112-116 (2011)
[32]M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, V. Wittwer, "Diffraction gratings and buried nano-electrodes-architectures for organic solar cells," Thin Solid Films, 619, 451-52 (2004)
[33]Z. hao, Y. He, Y. Li, "6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and lndene-C60Bisadduct by Device Optimization," Adv. Funct. Mater., 22, 4355-4358 (2010)
[34]K. Takanezawa, K. Hirota, Q. S. Wei, K. Hashimoto, "Efficient Charge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices," J. Phys. Chem., C111, 7218-7223 (2007)
[35]Y. Yang, K. Lee, K. Mielczarek, W. Hu, A. Zakhidov, "Nanoimprint of dehydrated PEDOT:PSS for organic photovoltaic," Nanotechnology., 22, 485301 (2011)
[36]J. Brabec, V. Dyakonov, J. Parisi, N. S. Sariciftci, "Organic Photovoltaics: concepts and realization," Springer, New York (2003)
[37]Y. Xia, X. M. Z. George, M. Whitesides, "Pattern transfer: Self-assembled monolayers as ultrathin resists," Microelectronic. Eng., 32, 255-268 (1996)
[38]Xia, G. M. Whitesides, "Soft Lithography," Angew. Chem. Int. Ed., 37, 550-575 (1998)
[39]G. Li, C. W. Chu, V. Shrotriya, J. Huang, Y. Yang, "Efficient inverted Polymer Solar Cells," Appl, Phys. Lett., 88, 253503 (2006)
[40]M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, "Inverted bulk-heteroiunction organic photovoltaic device using a solution-derived ZnO underlayer," Appl. Phys. Lett., 89, 143517 (2006)
[41]C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, C. J. Brabec, "Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact," Appl. Phys. Lett., 89, 233517 (2006)
[42]R. Steim, S. A. Choulis, P. Schilinsky, C. J. Brabec, “Interface modification for highly efficient organic photovoltaics,” Appl. Phys. Lett., 92, 093303 (2008)
[43]H. H. Liau, L. M. Chen, Z. Xu, G. Li, Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer,” Appl. Phys. Lett., 92, 173303 (2008)
[44]H. Hsieh, Y. J. Cheng, P. J. Li, C. H. Chen, M. Dubosc, R. M. Liang, C. S. Hsu, "Highly efficient and stable inverted polymer solar cells integrated with across-linked fullerene material as an interlayer," J. Am. Chem. Soc., 132, 4887-4893 (2010)
[45]S. K. Hau, H. L. Yip, N. S. Baek, J. Zou, K. O’Malley, A. K. Y. Jen, “Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer,” Appl. Phys. Lett., 92, 253301 (2008)
[46]A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, D. L. Kwong, “An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer,” Appl. Phys. Lett., 93, 221107 (2008)
[47]N. Sekine, C. H. Chou, W. L. Kwan, Y. Yang, “ZnO nano-ridge structure and its application in inverted polymer solar cell,” Organic Electronics, 10, 1473-1477 (2009)
[48]J. S. Huang, C. F. Lin, “Influences of ZnO sol-gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing,” Journal of applied physic, 103, 014304 (2008)
[49]S. Ameen, M. S. Akhtar, H. S. Shin, “Growth and characterization of nanospikes decorated ZnO sheets and their solar cell application,” Chemical Engineering Journal, Volumes 195-196, 307-313 (2012)
[50]A. Klein, C. K¨orber, A. Wachau, F. Sauberlich, Y. Gassenbauer, S. P. Harvey, D. E. Proffit, T. O. Mason, “Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment” Materials, 3, 4892-4914 (2010)
[51]M. T. Greiner, M. G. Helander, W. M. Tang, Z. B. Wang, J. Qiu, Z. H. Lu, “Universal energy-level alignment of molecules on metal oxides,” NATURE MATERIALS, VOL11 (2012)
[52]K. Cui, S. Fathololoumi, M. G. Kibria, G. A. Botton, Z. Mi, “InN/InxGa1-xN core/shell nanowire heterostructures on Si(111) substrates,” Nanotechnology, 23, 085205 (2012)
[53]J. B. You, X. W. Zhang, P. F. Cai, J. J. Dong, Y. Gao, Z. G. Yin, N. F. Chen, R. Z. Wang, H. Yan, “Enhancement of field emission of the ZnO film by the reduced work function and the increased conductivity via hydrogen plasma treatment,” APPLIED PHYSICS LETTERS, 94, 262105 (2009)
[54]J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science, 317222–225 (2007)
[55]S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nature Photonics, 3, 297–302 (2009)
[56]Y. y. Liang, Z. Xu, J. b. Xia, S. Ti. Tsai, Y. Wu, G. Li, “Claire for the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Advanced Materials, 22, E135–E138 (2010)
[57]F. C. Krebs, “Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium–tin-oxide,” Solar Energy Materials and Solar Cells, 93, 1636–1641 (2009)
[58]D. W. Zhao, L. Ke, Y. Li, S. T. Tan, A. K. K. Kyaw, H. V. Demir, X. W. Sun, D. L. Carroll, G. Q. Lo, D. L. Kwong, “Optimization of inverted tandem organic solar cells,” Solar Energy Materials and Solar Cells, 95, 921–926 (2011)
[59]A. Wicklein, S. Ghosh, M. Sommer, F. Wurthner, M. Thelakkat, “Self assembly of semiconductor organogelator nanowires for photoinduced charge separation,” ACS Nano, 3, 1107–1114 (2009)
[60]H. Ma, H. L. Yip, F. Huang, A. K. Y. Jen, “Interface engineering for organic electronics,” Advanced Functional Materials, 20, 1371–1388 (2010)
[61]C. Soci, I. W. Hwang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, A. J. Heeger, “Photo conductivity of a low-bandgap conjugated polymer,” Advanced Functional Materials, 17, 632–636 (2007)
[62]P. K. Sudeep, K. T. Early, K. D. McCarthy, M. Y. Odoi, M. D. Barnes, T. Emrick, “Monodisperse oligo(phenylene vinylene) ligands on CdSe quantum dots : synthesis and polarization anisotropy measurements,” Journal of the American Chemical Society, 130, 2384-2385 (2008)
[63]L. M. Chen, Z. Hong, G. Li, Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer fullerene morphology and the formation of efficient inverted polymer rsolar cells,” Advanced Materials, 21, 1434–1449 (2009)
[64]K. Tvingstedt, S. D. Zilio, O. Inganäs, M. Tormen, “Trapping light with micro lenses in thin film organic photovoltaic cells,” Optics Express, 16, 21608 (2008)
[65]M. Niggemann, M. Glatthaar, P. Lewer, C. Muller, J. Wagner, A. Gombert, “Functional microprism substrate for organic solar cells,” Thin Solid Films, 511, 628–633 (2006)
[66]J. R. Tumbleston, D. H. Ko, E. T. Samulski, R. Lopez, “Electro-photonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Applied Physics Letters, 94, 043305 (2009)
[67]S. I. Na, S. S. Kim, S. S. Kwon, J. Jo, J. Kim, T. Lee, D. Y. Kim, “Surface relief gratings on poly(3-hexylthiophene) andfullerene blends forefficient organic solar cells,” Applied Physics Letters, 91, 173509 (2007)
[68]C. F. Shih, K. T. Hung, J. W. Wu, C. Y. Hsiao, W. M. Li, “Efficiency improvement of blended poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6) C61 solar cells by nanoimprinting,” Applied Physics Letters, 94, 143505 (2009).
[69]Handbook of Conducting Polymers–Conjugated Polymers Processing and Application, 3rd ed. (Eds: T. A. Skotheim, J. R. Reynolds), CRR Press, New York (2007)
[70]D. G. Scharber, M. C. Brabec, C. J, “Polymer-fullerene bulk heterojunction solar cells,” Adv. Mater., 21, 1323-1338 (2009)
[71]A. L. Ayzner, “Reappraising the Need for Bulk Heterojunctions in Polymer-Fullerene Photovoltaics: The Role of Carrier Transport in All-Solution-Processed P3HT/PCBM Bilayer Solar Cells,” J. Phys. Chem. C, 113, 20050-20060 (2009).
[72]A. L. Ayzner, S. C. Doan, B. T. d. Villers, B. J. Schwartz, “Ultrafast Studies of Exciton Migration and Polaron Formation in Sequentially Solution-Processed Conjugated Polymer/Fullerene Quasi-Bilayer Photovoltaics,” J. Phys. Chem. Lett, 3 (16), 2281-2287 (2012).
[73]J. M. Nunz, “Organic photovoltaic materials and devices,” Physique, Vol. 3(4), 523-542 (2002)
[74]S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics, 3, 297 (2009)
[75]N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “Semiconducting polymers (as donors) and Buckminsterfullerene (as acceptor) — photoinduced electron-transfer and heterojunction devices,” Synth. Metals., 59, 333–352 (1993).
[76]M. Hiramoto, H. Fujiwara, M. Yokoyama, “P-I-N like behavior in 3-layered organic solar-cells having a co-deposited interlayer of pigments,” J. Appl. Phys., 72, 3781–3787 (1992)
[77]G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, “Polymer photovoltaic cells - enhanced efficiencies via a network of internal donor– acceptor heterojunctions,” Science, 270, 1789–1791 (1995)
[78]J. J. M. Halls, “Efficient photodiodes from interpenetrating polymer networks” Nature, 376, 498–500 (1995)
[79]B. A. Collins, J. R. Tumbleston, H. Ade, ”Miscibility, Crystallinity, and Phase Development in P3HT/PCBM Solar Cells: Toward an Enlightened Understanding of Device Morphology and Stability,” J. Phys. Chem. Lett., 2, 3135−3145 (2011)
[80]K. H. Lee, P. E. Schwenn, A. R. G. Smith, H. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, P. L. Burn, “Morphology of All-Solution-Processed “Bilayer, Organic Solar Cells,” Adv. Mater., 23, 766– 770 (2011)
[81]N. D. Treat, M. A. Brady, G. Smith, M. F. Toney, E. J. Kramer, C. J. Hawker, M. L. Chabinyc, “Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend,” Adv. Energy Mater., 1, 82–89 (2011)
[82]D. Chen, F. Liu, C. Wang, A. Nakahara, T. P. Russell, “Bulk Heterojunction Photovoltaic Active Layers via Bilayer Interdiffusion,” Nano Lett., 11, 2071–2078 (2011)
[83]A. M. Nardes, A. L. Ayzner, S. R. Hammond, A. J. Ferguson, B. J. Schwartz, N. Kopidakis, “Photoinduced Charge Carrier Generation and Decay in Sequentially Deposited Polymer/Fullerene Layers: Bulk Heterojunction vs Planar Interface,” J. Phys. Chem. C, 116, 7293-7305 (2012)
[84]H. Y. Chen, J. Hou, S. Zang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nature Photonics, 3, 649–653 (2009)
[85]F. G. Brunetti, R. Kumar, F. Wudl, “Organic electronics from perylene to organic photovoltaics: painting a brief history with a broad brush,” Journal of Materials Chemistry, 20, 2934-2948 (2010)
[86]M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, “ Design Rules for Donors in Bulk-Heterojunction Solar Cells-Towards 10 % Energy-Conversion Efficiency,“ Advanced Materials, 18, 789-794 (2006)
[87]Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nature Materials, 5, 197-203 (2006)
[88]M. Aryal , K. Trivedi, W. W. Hu, “Nano-Confinement Induced Chain Alignment in Ordered P3HT Nanostructures Defined by Nanoimprint Lithography,” ACS Nano 3, 10, 3085–3090 (2009)
[89]J. E. Slotaa, A. Vitae, X. Hea, A. Vitae, W. T. S. Hucka, “Controlling nanoscale morphology in polymer photovoltaic devices,” NanoToday Volume 5, Issue 3, 231–242 (2010)
[90]K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, K. Hashimoto, “Efficient Charge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices,” J. Phys. Chem. C, 111, 7218-7223 (2007)
[91]K. S. Nalwa, J. M. Park, K. M. Ho, S. Chaudhary, “On Realizing Higher Efficiency Polymer Solar Cells Using a Textured Substrate Platform,” Advanced Materials, 23, 112–116 (2011)
[92]Y. Yang, K. Lee, K. Mielczarek, W. Hu, A. Zakhidov, "Nanoimprint of dehydrated PEDOT:PSS for organic photovoltaic," Nanotechnology, 22, 485301 (2011)
[93]A. Colsmann, M. Reinhard, T. H. Kwonb, C. Kayser, F. Nickel, J. Czolk, U. Lemmer, N. Clark, J. Jasieniak, A. B. Holmes, D. Jones, “Inverted semi-transparent organic solar cells with spray coated, surfactant free polymer top-electrodes,” Solar Energy Materials & Solar Cells, 98, 118-123 (2012)
[94]H. P. Kim, H. J. Lee, A. R. b. M. Yusoff, J. Jang, “Semi-transparent organic inverted photovoltaic cells with solution processed top electrode,” Solar Energy Materials & Solar Cells, 108, 38-43 (2013)
[95]Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. M. Meskamp, K. Leo, “Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells,” Adv. Funct. Mater., 21, 1076-1081 (2011)
[96]Y. Zhou, H. Cheun, S. Choi, W. J. Potscavage, Jr., C. F. Hernandez, B. Kippelen, “Indium tin oxide-free and metal-free semitransparent organic solar cells,” applied physics letters, 97, 153304 (2010)
[97]Y. Zhou, H. Cheun, S. Choi, C. F. Hernandez, B. Kippelen, “Optimization of a polymer top electrode for inverted semitransparent organic solar cells,” Organic lectronics, 12, 827-831 (2011)
[98]A. K. Chu, J. S. Wang, Z. Y. Tsai, C. K. Lee, ”A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers,” Solar Energy Materials & Solar Cells, Vol.93, No.8, 1276-1280 (2009)
[99]A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, A. Wang, ”Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Optics Communications, Vol.172, No.1-6, 139-151 (1999)
[100]I. Zubel, M. g. Kramkowska, ”The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions,” Sensors and Actuators A: Physical, Vol93, No.2, 138-147 (2001)
[101]P. Campbell, M. A. Green, ”High performance light trapping textures for monocrystalline silicon solar cells,” Solar Energy Materials and Solar Cells, Vol.65, No.1-4, 369-375 (2001)
[102]E. Garnett, P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett, 10, 1082-1087 (2010)
[103]D. Shir, J. Yoon, D. Chanda, J. H. Ryu, J. A. Rogers, “Performance of Ultrathin Silicon Solar Microcells with Nanostructures of Relief Formed by Soft Imprint Lithography for Broad Band Absorption Enhancement,” Nano Lett, 10, 3041-3046 (2010)
[104]P. Doshi, G. E. Jellison, Jr., A. Rohatgi, ”Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics,” Applied Optics, Vol.36,No.30, 7826-7837 (1997)
[105]D. S. Ruby, W. L. Wilbanks, C. B. Fieddermann, ”A Statistical Analysis of the Effect of PECVD Deposition Parameters on Surface and Bulk Recombination in Silicon Solar Cells,” IEEE First WCPEC, Vol.2, No.5-9, 1335-1338 (1994)
[106]Z. Chen, P. Sana, J. Salami, A. Rohatgi, ”A Novel and Effective Antireflection Coating PECVD SiO2/SiN for Si Solar Cells,” IEEE Transactions on Electron Devices, Vol.40, No.6, 1161-1165 (1993)
[107]M. J. Kerr, J. Schmidt, A. Cuevas, J. H. Bultman, ”Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” Journal of Applied Physics, Vol.89, No.7, 3821-3826 (2001)
[108]T. Saitoh, O. Kamataki, T. Uematsu, ”Optimization of Antireflection Film Structures for Surface-Passivated Crystalline Silicon Solar Cells,” Jpn. J. Appl. Phys., Vol.33, No.4A, 1809-1813 (1994)
[109]C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H. M. Marée, L. A. Verhoef, “Low temperature surface passivation for silicon solar cells,” Solar Energy Materials and Solar Cells, Vol.40, No.4, 297-345 (1996)
[110]J. Burschka1, N. Pellet, S. J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” NATURE, 499, 316 (2013)
[111]Y. Zhao, K. Zhu, “Charge Transport, “Recombination in Perovskite (CH3NH3)PbI3 Sensitized TiO2 Solar Cells,” J. Phys. Chem. Lett, 4, 2880-2884 (2013)
[112]J. Shi, Y. Luo, H. Wei, J. Luo, J. Dong, S. Lv, J. Xiao, Y. Xu, L. Zhu, X. Xu, Hu. Wu, D. Li, Q. Meng, “Modified Two-Step Deposition Method for High-Efficiency TiO2/CH3NH3PbI3 Heterojunction Solar Cells, ” ACS Appl. Mater. Interfaces, 6(12), 9711–9718 (2014)
[113]J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, T. C. Wen, “CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells,” Adv. Mater., 25, 3727–3732 (2013)
[114]M. Liu, M. B. Johnston, H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” nature, 501, 395 (2013)
[115]F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, “Lead-free solid-state organic–inorganic halide perovskite solar cells,” nature photonics, 4, 1 (2014)
[116]J. Burschka, N. Pellet, S. J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” nature, 499, 316 (2013)
[117]D. Liu, T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” nature photonics, 8, 133 (2014)
校內:2020-01-26公開